
A Validated Parser for Stan

Brian Ward Advisors: Joseph Tassarotti, Jean-Baptiste Tristan

Boston College Computer Science Department

Abstract

Before any code can be interpreted, compiled, or otherwise processed, it must �rst be parsed.
This process of mechanically reading and interpreting code is a well-trodden area of compiler
design, and one that has many existing tools and methods. A programmer can succinctly
specify the syntax of a language and use a variety of tools, known as parser generators,
to create code which implements the translation from that syntax into a tree structure for
evaluation or compilation.

Recent developments in the �eld allow for a way to be certain that this translation is
done following the desired speci�cation. Rather than simply trusting a handwritten parser,
or trusting those who write parser generators such as

Contents

1 Introduction 3
1.1 Parsing . 3

1.1.1 Context Free Grammars . 3
1.1.2 Parser Generators . 5

1.2 Stan . 5
1.3 Formal Veri�cation . 7

1.3.1 The CompCert C Compiler . 8

2 Validated Parsing in Menhir 8
2.1 Basics . 9
2.2 Error Messages and Real-World Parsing . 9

2.2.1 A Second Parser . 10
2.2.2 Veri�ed Incremental Mode . 10
2.2.3 Meaningful returns on error . 11

2.3 Modi�cations . 11

3 Parsing Stan 12
3.1 Grammar Transformations . 13
3.2 Error Messages and Other Work . 13

4 Results 14

5 Acknowledgments 14

References 16

A Error Messaging Code 17

B Final Grammar 18

2

1 Introduction 4

4. A set of productions that provide rules for translating from a non-terminal to terminal
and non-terminal symbols. By convention, a set of productions is generally used as the
complete speci�cation of the language, with the start symbol’s productions listed �rst.
Productions are written as nt ! derivation or nt ::= derivation, in a format known
as Backus-Naur form [2]. If there are multiple productions for a given non-terminal,
the various options can be written as x j y.

This is usually easier to understand by an example. Perhaps the simplest non-trivial CFG
is the following single production:

expr ::= ‘x’ j expr ‘+’ expr

This grammar contains one non-terminal (expr) and two terminal (x, +) symbols. It de�nes
an in�nite language of repeated additions. Some members of this language are x, x + x,
and x + x + x + x + x. Because this production features the same non-terminal on both
sides of the translation, it is said to be a recursive rule. It is possible to be more speci�c in
some cases, e.g. a rule a

1 Introduction 5

1 Introduction 6

the preservation of semantic meaning during this translation. Stan programs must change
meaning during compilation from a description of a random process into a program that
simulates that randomness. It is worth noting that while the output programs may be
pseudo-random, the compilation itself is deterministic.

While the nature of Stan as a PPL is not necessary to understand in order to parse
it, this does provide one of the philosophical underpinnings for this project. Testing that
the compilation translation was done properly can be very di�cult because programs that
simulate randomness are particularly hard to test by traditional means. Take for example
a function that returns a value between 0 and 1 uniformly at random. How does one test
that this function is well-behaved? It is hard to say much more about an individual run of

https://xkcd.com/221/

1 Introduction 7

data {

int<lower=0> N;

vector[N] x;

vector[N] y;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;

}

model {

y ~ normal(alpha + beta * x, sigma);

}

Fig. 3: An example linear regression Stan model [16, User Guide §1.1].

1.3 Formal Veri�cation

Formal Veri�cation is the practice of proving properties of a program through standard
mathematical tools. Such proofs are often performed in a semi-automatic fashion with the
aid of a proof assistant. These are tools that automate some basic parts of proofs while
requiring the programmer to provide the remaining steps. Coq is both a proof assistant
and a functional programming language [14]. This means one can both write programs and
prove properties about them in the same language. That is to say one writes software that
is correct by construction.

There are several intellectual hang-ups associated with formal veri�cation of software. If
software can be written correctly without testing, why is that not the standard practice?
Is it even possible to have a proof written in a way computers can understand, check, and
assist with?

The answer to both of these hinges on the work the programmer must do. It is easy
to prove many simple things on a computer, and the computer can assist with repetitive,
simple tasks | indeed, this is what computers do all the time in other facets of work. Unlike
many proofs in mathematics, proofs of software correctness are often intellectually simple,
it is just the size of the problem that makes it infeasible to prove ‘by hand’. There are few
requirements for ‘tricks’ or the invention of new techniques, just the repeated application of
many basic principles such as induction or case analysis. The computer can be quite good
at solving incredibly large and repetitive (but ultimately quite ‘dumb’) proofs.

Writing proofs in such a way to leverage this capability can a di�cult and time-consuming
task for the programmer, but it is far from impossible. We will discuss in Section 1.3.1 one
example of a large fully veri�ed program which shows that it truly can be done in practice.
Additionally, as discussed above, some problems lend themselves more naturally to formal
methods; for problems that the more traditional means of testing would also require a good
deal of work, or for which complete testing is infeasible, there is a prime opportunity to use
the tools of formal veri�cation to avoid these pitfalls.

2 Validated Parsing in Menhir 8

Coq is written in OCaml and has many similar features as a programming language. It
features the ability to be \extracted," a process of mechanically translating Coq code to
OCaml or other languages. Coq’s proof abilities are based on the formal language of the
Calculus of Inductive Constructions [9]. It is not essential to understand these details {

2 Validated Parsing in Menhir 9

2 Validated Parsing in Menhir 10

input program" can take a massive amount of time to resolve, but \Missing) on line 32" is
�xed almost instantly.

After successfully transforming the Stan reference parser into one suitable for veri�cation
by the Coq mode of Menhir, we considered how best to generate these error messages. Based
on the existing CompCert example, and the rest of the Menhir ecosystem, we identi�ed three
options for proceeding:

1. Follow the lead of CompCert and use a second { unveri�ed { parser that sits in front
of the veri�ed parser and uses Menhir’s \incremental" (or \table") mode. This is a
backend that, like the Coq mode, changes the style of parser produced and is used in
Menhir’s standard error messaging techniques. This would be a simple solution that
clearly has been used before.

2. Modify Menhir’s Coq mode signi�cantly to allow it to be run in the same incremental
style that enables the standard error messaging (and additional error recovery features)
that are available in Menhir’s \table" backend.

3. Modify Menhir’s Coq mode to return the parser’s state and other contextual informa-
tion when an error state is entered.

We considered each choice in turn.

2.2.1 A Second Parser

The most straightforward choice would be to use a second parser to handle the error mes-
saging. This is done in CompCert’s C compiler, which also does lexical feedback through
this initial parser [10]. The grammar structure of this additional parser would be the same,
and Menhir supports ags for automatically generating grammar speci�cation �les with the
semantic actions removed. This would allow someone who chooses this path to automatically
create the second parser as part of their build system with relatively minimal e�ort.

The main arguments against this approach are twofold. First, this approach adds nothing
to the existing tools and methods. It is entirely trodden terrain. Secondly, parsing twice is
both inelegant and (at least for Stan) unnecessary.

2.2.2 Veri�ed Incremental Mode

This second option would recreate the existing behavior of Menhir’s incremental API, but
in the veri�ed mode. This alternative backend produces parsers that perform one step of
parsing at a time and then yield their (partial) results to the calling code. Syntax errors
can be handled while they occur, rather than the entire parse failing, and this allows both
error-messaging and error-recovery to be done in a natural and elegant way. Two concerns
made this option undesirable.

First, this is the approach that would require the most changes to Menhir. Any existing
use of the tool would need signi�cant changes. Furthermore, the ultimate bene�ts that those
users received would be relatively limited | with a few notable exceptions, such as the Merlin
language server [5], the incremental mode is often used as simply a very large hammer to

2 Validated Parsing in Menhir 11

solve the very small problem of error messaging. The additional features it enables, such as
allowing error resolution, not just recognition, are unnecessary for our (and many other’s)
use case.

It is these very features that actually lead to a second reason to not pursue this path.
Incremental parsing is ultimately driven by the lexer or an external loop, not the parser
itself. This means any true veri�cation of the parser would require proof that the lexer and
other code also maintain the invariants required by the parser’s correctness and completeness
theorems. It would be counter to the entire notion of verifying the parser to allow the lexer
to feed back unveri�ed data following each and every computation, and we therefore decided
against this method.

2.2.3 Meaningful returns on error

Finally, there was the middle road. The parser generated by Menhir’s Coq mode has a sum
type for its output, as show in Section 2.1. By modifying the Fail_pr branch of this type
to include information about the state of the parser during the time the error was detected,
we can reconstruct a meaningful error message after failure. In particular, we can return the
state of the parser and the last token seen. The state is the piece of information used by
Menhir’s existing error messaging functionality when in incremental mode, and clever use of
the token types (as is employed in both CompCert and our parser) allows the retrieval of
crucial context information.

This �nal option was ultimately selected for use. This required modi�cations to both
Menhir and the coq-menhirlib library.

2.3 Modi�cations

There are two basic pieces of information that are useful for creating meaningful error mes-
sages: the state of the parser (which carries information about what was expected and
therefore what went wrong) and the position of the error. The �rst is relatively simple -
it is usually encoded as a number, and the existing Menhir tools rely on these numbers for
picking which error message is displayed. The second is not immediately available to the
parser, but must be given by the lexer. Luckily, it is quite reasonable to include position
information in each token the lexer produces. The token causing the error can thereafter be
used as a stand-in for the position of the error in the input.

The modi�cations to Menhir were motivated by making these two pieces of informa-
tion available. This primarily required modi�cation to the �le Interpreter.v in the coq-
menhirlib library that is linked to the generated Coq parsers. In particular, the return type
of the parsing functions was updated to:

Inductive parse_result :=

| Fail_pr_full: state -> token -> parse_result

| Timeout_pr: parse_result

| Parsed_pr: symbol_semantic_type (NT (start_nt init)) ->

Stream token ->

parse_result.

3 Parsing Stan 12

This change was nearly enough on its own, but the existing proofs and usages of this type all
ostensibly needed to be updated to recognize the new Fail_pr_full. However, none of these
actually require this information (this should be obvious, as they predated its inclusion).
Therefore, using the Coq notation functionality, Fail_pr was set up as an abbreviation
for Fail_pr_full _ _. This meant no further modi�cations to the library were needed to
complete this change.

As mentioned above, the state is often encoded as a simple integer, but in this return
type it is provided as a sum type, state

https://gitlab.inria.fr/fpottier/menhir/-/merge_requests/13
https://gitlab.inria.fr/fpottier/menhir/-/tree/master/demos/coq-syntax-errors

3 Parsing Stan 13

over the documentation in areas where they disagreed, as this is believed to represent Stan
‘in the real world’. We mainly di�ered from stanc3’s parser to conform to the requirements

4 Results 14

The driver code in the larger compiler was modi�ed to display syntax errors, and the relevant
portion of this code is available in Appendix A. Finally, the error messages were written for
each parser state that can lead to an error. While the .messages �le from stanc3 was used
as a reference, the di�erences between the grammars meant that these needed to largely be
done by hand. Our �nal parser has 237 possible error-causing states, which correspond to
164 unique error messages.

4 Results

This thesis successfully created a veri�ed parser for Stan for use in a formally veri�ed com-
piler. This required rewriting the grammar and semantic actions for use with the veri�ed
mode provided by the Menhir parser generator. Furthermore, changes were made to Menhir
to allow error messaging capability from the veri�ed parser alone, and these changes were
included upstream by the Menhir developers.

This work allows the further development of the Stan veri�ed compiler, and it provides
greater functionality to anyone seeking to use Menhir to produce realistic, validated parsers.

Another avenue for useful extension of Menhir’s Coq mode which was identi�ed, but not
pursued, would be the addition of the associativity and precedence declarations which are
available in the more typical usage of Menhir. A large amount of manual work was put in to
translating the grammar speci�cation from one that used these annotations to one that did
not, and this required additional testing to ensure that the grammars still agreed with one
another. This serves as both a source of potential human error and a barrier to the adoption
of validated parsing. Implementing these would make transitioning from an existing Menhir
speci�cation to one which could be used with the Coq backend considerably simpler.

5 Acknowledgments

I would like to thank Joseph Tassarotti and Jean-Baptiste Tristan for their guidance and
mentorship throughout the development and writing of this thesis. Additionally, thanks
are owed to Robert Muller, for introducing me to them both, and Howard Straubing, for
advising me throughout my undergraduate studies and insisting that I write a thesis. Outside
of the Boston College Computer Science department, thank you to both Fran�cois Pottier
and Jacques-Henri Jourdan for their assistance in modifying Menhir and their eagerness to
include my contributions into the tool.

The work described in this thesis was supported by a gift from Oracle Labs.
Finally, I would like to thank my family, my roommates, and my girlfriend, Olivia, for

all helping me �nish my studies in this very odd year and nodding intently while I described
details of my work that were decidedly outside of their interests and areas of expertise.

References 15

References

[1] A new Stan-to-C++ compiler, stanc3. https://github.com/stan-dev/stanc3

https://github.com/stan-dev/stanc3
https://www.iso.org/standard/26153.html
https://github.com/Lelio-Brun/Obelisk
https://statmodeling.stat.columbia.edu/2016/12/20/stan-2-10-stan-2-13-produce-biased-samples/
https://statmodeling.stat.columbia.edu/2016/12/20/stan-2-10-stan-2-13-produce-biased-samples/
https://coq.github.io/doc/v8.9/refman/language/cic.html
https://coq.github.io/doc/v8.9/refman/language/cic.html
https://github.com/AbsInt/CompCert
https://github.com/AbsInt/CompCert
https://softwarefoundations.cis.upenn.edu/lf-current/index.html

References 16

[15] Fran�cois Pottier and Yann R�egis-Gianas. Menhir Reference Manual. INRIA, November
2020. https://gallium.inria.fr/~fpottier/menhir/manual.html.

[16] Stan Development Team. Stan Modeling Language Users Guide and Reference Manual,
2019. https://mc-stan.org.

https://gallium.inria.fr/~fpottier/menhir/manual.html
https://mc-stan.org

A Error Messaging Code 17

A Error Messaging Code

This code is part of my contributions to the full parser project, built on CompCert [13].

let location t : Lexing.position * Lexing.position =

match t with

(* These four tokens have a payload we ignore *)

| STRINGLITERAL sp | REALNUMERAL sp | INTNUMERAL sp | IDENTIFIER sp ->

snd sp

(* All of the following tokens have no payload, just a position *)

| WHILE p |

https://github.com/jtristan/ProbCompCert/tree/pcp-error

B Final Grammar 18

B Final Grammar

The following grammar was generated from the Menhir description �le using Obelisk [6].
It is written in a common extension of Backus-Naur form, which allows several shorthand

B Final Grammar 19

hbasic typei ::= ‘INT’
j ‘REAL’
j ‘VECTOR’
j ‘ROWVECTOR’
j ‘MATRIX’

hunsized dimsi ::= ‘LBRACK’ ‘COMMA’� ‘RBRACK’

hvar decli ::= hsized basic typei hdecl identi�eri [hdimsi] [‘ASSIGN’
hexpressioni] ‘SEMICOLON’

hsized basic typei ::= ‘INT’
j ‘REAL’
j ‘VECTOR’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘ROWVECTOR’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘MATRIX’ ‘LBRACK’ hexpressioni ‘COMMA’ hexpressioni ‘RBRACK’

htop var decl no assigni ::= htop var typei hdecl identi�eri [hdimsi] ‘SEMICOLON’

htop var decli ::= htop var typei hdecl identi�eri [hdimsi] [‘ASSIGN’ hexpressioni]
‘SEMICOLON’

htop var typei ::= ‘INT’ hrange constrainti
j ‘REAL’ htype constrainti
j ‘VECTOR’ htype constrainti ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘ROWVECTOR’ htype constrainti ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘MATRIX’ htype constrainti ‘LBRACK’ hexpressioni ‘COMMA’
hexpressioni ‘RBRACK’

j ‘ORDERED’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘POSITIVEORDERED’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘SIMPLEX’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘UNITVECTOR’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘CHOLESKYFACTORCORR’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘CHOLESKYFACTORCOV’ ‘LBRACK’ hexpressioni [‘COMMA’ hexpressioni]

‘RBRACK’
j ‘CORRMATRIX’ ‘LBRACK’ hexpressioni ‘RBRACK’
j ‘COVMATRIX’ ‘LBRACK’ hexpressioni ‘RBRACK’

htype constrainti ::= hrange constrainti
j ‘LABRACK’ ho�set multi ‘RABRACK’

hrange constrainti ::= [‘LABRACK’ hrangei ‘RABRACK’]

hrangei ::= ‘LOWER’ ‘ASSIGN’ hconstr expressioni ‘COMMA’ ‘UPPER’
‘ASSIGN’ hconstr expressioni

j ‘UPPER’ ‘ASSIGN’ hconstr expressioni ‘COMMA’ ‘LOWER’
‘ASSIGN’ hconstr expressioni

B Final Grammar 21

hleftdivide expressioni ::= hpre�x expressioni+‘LDIVIDE’

hpre�x expressioni ::= ‘BANG’ hexponentiation

B Final Grammar 22

hprintablesi ::= hprintablei+‘COMMA’

hprintablei ::= hexpressioni
j hstring literali

hlhsi ::= hidenti�eri
j hlhsi ‘LBRACK’ hindexesi ‘RBRACK’

hstatementi ::= hclosed statementi
j hopen statementi

hatomic statementi ::= hlhsi hassignment opi hexpressioni ‘SEMICOLON’
j hidenti�eri ‘LPAREN’ hexpressioni�‘COMMA’

B Final Grammar 23

hopen statementi ::= ‘IF’ ‘LPAREN’ hexpressioni ‘RPAREN’ hsimple statementi
j ‘IF’ ‘LPAREN’ hexpressioni ‘RPAREN’ hopen statementi
j ‘IF’ ‘LPAREN’ hexpressioni ‘RPAREN’ hclosed statementi

‘ELSE’ hopen statementi
j ‘WHILE’ ‘LPAREN’ hexpressioni ‘RPAREN’ hopen statementi
j ‘FOR’ ‘LPAREN’ hidenti�eri ‘IN’ hexpressioni ‘COLON’
hexpressioni ‘RPAREN’ hopen statementi

j ‘FOR’ ‘LPAREN’ hidenti�eri ‘IN’ hexpressioni ‘RPAREN’
hopen statementi

hclosed statementi ::= ‘IF’ ‘LPAREN’ hexpressioni ‘RPAREN’ hclosed statementi
‘ELSE’ hclosed statementi

j ‘WHILE’ ‘LPAREN’ hexpressioni ‘RPAREN’ hclosed statementi
j hsimple statementi
j ‘FOR’ ‘LPAREN’ hidenti�eri ‘IN’ hexpressioni ‘COLON’
hexpressioni ‘RPAREN’ hclosed statementi

j ‘FOR’ ‘LPAREN’ hidenti�eri ‘IN’ hexpressioni ‘RPAREN’
hclosed statementi

hsimple statementi ::= ‘LBRACE’ hvardecl or statementi� ‘RBRACE’
j hatomic statementi

hvardecl or statementi ::= hstatementi
j hvar decli

htop vardecl or statementi ::= hstatementi
j htop var decli

	Introduction
	Parsing
	Context Free Grammars
	Parser Generators

	Stan
	Formal Verification
	The CompCert C Compiler

	Validated Parsing in Menhir
	Basics
	Error Messages and Real-World Parsing
	A Second Parser
	Verified Incremental Mode
	Meaningful returns on error

	Modifications

	Parsing Stan
	Grammar Transformations
	Error Messages and Other Work

	Results
	Acknowledgments
	References
	Error Messaging Code
	Final Grammar

