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1 Introduction

In many social and economic environments, an individual & behavior or outcome depends
on both his own characteristics and on the behavior and characteristics of other individuals.



While often assumed in practice, the linear-in-means assumption is very unlikely to hold
in many applications like classrooms, where peer and contextual ecects are more likely to
operate through actual friendships with varying strengths, instead of equal in&uence from
all group members. We also show how to use our identiOcation results to empirically test
the linear-in-means assumption. We reject this assumption in the STAR data.

1.1. The Model. Lety; 2 R and X; 2 RX denote the outcome and exogenous covariates,
respectively, for an individual i. Each individual belongs to one of L groups, a.k.a. networks.
Assume there are n, individuals in each group | 2 f1;:::; Lg. Each group | has an unobserved
n; n, adjacency matrix G, whose (i; j)-th component is either binary (equals 1 if i is linked
to j, and 0 otherwise), or is a generic number (a weight) indicating the strength of the link
between i and j.!

The researcher only observes y; and X; for each individual i, and the identity of the
group that each individual i belongs to. The researcher does not observe the adjacency
matrices G;,...,G_. For example, suppose each group is an elementary school class, and each
G, describes a network of friendships or study partners among the students in class I. The
researcher observes each student i E test score y; and the student vector of demographic and
other characteristics X;. The researcher also observes which class (i.e., group) each student
is in, but does not observe who is friends with whom, or who studies with whom, within each
class. Instead of observing or modeling the adjacency matrices of each group (i.e., class), we
only assume that there is an unknown distribution of latent adjacency matrices, from which
each group® matrix G, is drawn.

We assume a standard linear social network model:?

yi= + Gy +X +GX +", 1)

where y, and ", are n; 1 vectors of outcomes and errors, respectively, an n; 1 vector
of ones, and X, an n; K matrix of covariates. Assume for now that the errors ", are i.i.d.
and uncorrelated with X, (these conditions can be relaxed). Our asymptotics are that the
number of members n,; of each network | is Oxed, but the total number of networks L goes to



If the adjacency matrix G, were observed for each group | in the sample, then point
identiOcation and estimation of these parameters under general conditions would follow from
existing methods in the literature. For example, one could use the linear instrumental
variables estimator of Bramoullé, Djebbari and Fortin (2009), which uses data on friends of
friends, i.e., G,2X|, as instruments for endogenous regressors G,y;.

1.2. Intuition for ldentiOcation and Estimation. To explain the intuition for our
identiOcation strategy, let us continue to use the example of students in a class. Begin by
making the simplifying assumption that all classes are the same size, having n students per
class (later, in Section 6.3, we describe multiple methods of generalizing our results to handle
variation in group sizes).

Equation (1) says that each element of y, (that is, each studentE test score) is a linear
function of the characteristics of that student, and of the test scores and characteristics of
that student® friends. One could imagine trying to directly estimate these linear functions






simulations are in the appendix.

2 Literature Review

Standard estimators of social interactions models, like Lee (2007), Bramoullé, Djebbari
and Fortin (2009), and Lin (2010) assume network links are reported in the data. One
popular model that does not require observing the network is the Tlinear-in-meansT model.






ecects operate through the same adjacency matrix G,. This assumption is standard in
the literature whenever both peer and contextual ecects are included in a model. See, e.g.,
Lee (2007), Bramoulle, Djebbari and Fortin (2009), and de Paula Rasul and Souza (2020).
One paper that relaxes this assumption is Blume , Brock, Durlauf and Jayaraman (2015).
This assumption is generally imposed because it would be di¢ cult to distinguish from data
the extent to which any observed link applies to peer ecects versus to contextual exects.
We are not aware of any data sets where such information has been collected. However,
since our identiGcation is intended precisely to cover situations where link data is not, or
cannot, be observed, it is possible that our methods could be extended to cover such models.
We discuss the possibility of extending our method to cover this case of multiple adjacency
matrices within each group in Appendix E.

We conclude this literature review by noting a deep connection between identiOcation of
linear network models and identiOcation of traditional structural systems of linear equations,
going back to the rank and order conditions described by Koopmans (1949) and the Cowles
foundation, and in more detail in Fisher (1966). First, consider the setting in de Paula,
Rasul and Souza (2020), which is equation (1), but simpliCed by having G, = G and n, = n416(9)]TJ/Fke



The linear-in-means model, which corresponds to a G having all oa-diagonal elements
equal to 1=(n 1), suxers from the Tre&ection problemT as pointed out by Manski (1993).
The reéection problem is a failure to obtain identiCcation because of a violation of the rank



draws from some unknown distribution of possible networks. As explained below, our method
requires these networks to be exogenous from the individual characteristics whose social
ecects are to be identiCed.

By convention in the literature, the diagonal entries in each G, are all zeros, i.e., G)jj =
0 for i = 1;:::;n. The oa-diagonal entries G;; 2 R measure the strength of the link
between individuals i and j, with G,;; = 0 signifying the absence of a link. The unobserved
adjacency matrices G;, ..., G_ are assumed to be row-normalized. That is, given a group
adjacenlg/ matrix G,, the (i;j)-th component in the row-normalized version G, is Gj; =
Gy;= F’Izl Giijr






Assumption 5 (Non-trivial eaects) (i) For each k < K, the 2-by-2 matrix

k

k K

has full rank. (if) & cl for any c 2 R, where  is a matrix of reduced-form coe¢ cients
for the K-th regressor as deOned in equation (5).

Part (i) of Assumption 5 rules out the pathological case where some pair of regressors
have proportional contextual and peer ecects. As long as one regressor has contextual and
peer coet¢ cients that are not proportional to those of any other regressor, we can reorder the
columns of X to make that regressor be the K-th regressor to satisfy part (i). A su¢ cient
but not necessary condition for part (i) is « = 0 (one of the regressors has no contextual
ecect) while , , and  are all nonzero for all k < K. Part (ii) of Assumption 5 rules
out another pathological case, where the K-th regressor of each individual i has identical
marginal ecects on its own expected outcome, but no impact on that of any other group
member.

In addition to Assumptions 1 to 5, to obtain identiOCcation we will require some exclusion
restrictions, to satisfy a rank condition. These are discussed at length in Section 4.1.

4 ldentiOcation

The Orst step of our identiCcation strategy is to show how the reduced-form parameters
relate to the structural components of our model. As we show below, E y j X is linear in

X. Hence the reduced-form parameters can be alternatively deOned as the coet¢ cients of X
in this conditional expectation.

Lemma 1 Under Assumptions 1-4, the reduced-form parameters ,and , forl k K,
deOned in (5), are identiCed.

The proof of lemma 1 is in Appendix A, but the intuition is as follows. Let y; denote the
outcome for individual i. By construction,

EQ(i] X) = (+e&EM)X +6EMG)X ; (6)

where e; is @ 1  n unit-vector whose i-th component is 1. Observe that the right-hand
side of (6) is linear in all Kn components of X, so E yj X s linear in X. This equation
holds because G and M are independent from X by Assumption 3, and E(M" j X) =

12



E[ME( ) X;G)jX] =0 by Assumption 2. The equality in (6) also uses the fact that the
row-normalization of G implies

The second equality here holds because, by row-normalization, each row of M adds up to
the same constant 1=(1 ).

In the reduced form of equation (6), the slope coet¢ cient for the k-th regressor of indi-
vidual j is eiE(M)e% + , 6E(MG) e% . (Note that, for a generic n  n matrix Q,
the product eiQeﬂ returns the (i; j)-th component in Q.) The full rank and the invertibility
conditions in Assumption 4 guarantee the identiCcation of these reduced-form coe¢ cients.
These identiOed vectors of regressor coe¢ cients are then arranged into the K matrices of
reduced-form coe¢ cients | for k = 1;:::;; K.

Remark 1 The representation of E(y j X) in (6) is consistent not only with the simulta-
neous social network model with complete information given by equation (1), but also with



size is moderately large.” Otherwise, the researcher needs to take measures to estimate the
reduced-form coe¢ cients using limited data. For example, instead of requiring the sample size
be large relative to the number of regressors in OLS, de Paula et al. (2020) impose a sparsity
condition on the structural-form adjacency matrix, and then use a penalization approach to
estimate the reduced-form interaction matrix. In contrast, we propose alternative ways to



be a scalar multiple of I in order for (9) to hold for (ay; k). Case 3: ax & ay, Uk & bx. Then
(11) requires |, = gt ‘;t k., Which is a scalar multiple of . Again, this implies that in
order for (9) to hold for (ax;bk), « must be a scalar multiple of 1. In each of these three

cases, the implication of (11) contradicts part (ii) of Assumption 5. [

The reduced-form coe¢ cients , and  are identiCed by Lemma 1. Therefore, for each
k K 1;



For general cases with K > 3, the linear system in (14) is generalized to:

O 0 H 10 1 O 1
K11 (K 1)K (K 1)1
« 11 Ok 1k 28 g 5 O 1) 1 , (15)
m | |
| {z H—{z-} |—{Z }

with m  (mg; my; mK)0 I isa K K identity matrix, and H isa (K  1)-by-K matrix
H [diag(as;:ax 1); (baiba; bk 1),

The rank of the matrix is generically 2K 1. It cannot be greater than 2K 1 by con-

struction, and is strictly less than 2K 1 only if the DGP generates one or more pathological

equality constraint coincidences among the ay, bx, and my terms.

Next, we deOne what we call an environment. An environment s is a subpopulation of
groups, deOned by observable information, that satisGes Assumptions 1 to 5. Each group
lies in one and only one environment. Let S denote the Onite number of environments in the
population. We allow all model parameters and group sizes to vary across environments, and
so all can be given an s superscript. Within each environment, the structural parameters
are Oxed. For example, environment can be deOned by classroom size as in our empirical
study. Notice S = L is ruled out because S is Onite and L ¥ 1. To accommodate data
that has groups of dicerent sizes, we can assume a dizerent environment s for each possible
group size n® (additional ways to deal with varying group sizes are discussed later).

Because structural parameters & ((®: O &) 2 R2K+1 gnqg the distribution of
(G; X;™) vary by environment in general, we index them with superscripts s, (G®); X ©); "®),
to emphasize that they are allowed to be drawn from dicerent distributions across dicerent
environments. For example, for two groups | and k from the same environment s, their
adjacency matrices G, and Gy dicer but are drawn from the same distribution indexed
by s; in comparison, for two groups | and k' from dicerent environments s and s, the
adjacency matrices G, and Gy are drawn from two dixerent distributions, indexed by s
and s respectively. Now identiCcation of the model requires that we identify © for each
environment s.

Suppose © and the distribution of (G®;X®);"®) satiiy61h6 @ B)idr(s Y LARELIMGP)S16(0) 11(S)8(¢



where 0 and d are column vectors that stack © and © respectively for s = 1;:::;S; and



where all oo-diagonal elements of G® equal 1=(n®® 1). The re&ection problem shows that
in this model, even if G® were known, the structural parameters would not be identiCed
without additional restrictions. Since our model includes this linear-in-means model as a
special case, we must require at least as many additional restrictions for identiOcation.®

There are two types of rank restrictions that are most natural to impose. The Orst type
are exclusion restrictions, which consist of assuming that some elements of either or
equal zero (like the exclusion restrictions commonly used to identify linear simultaneous
systems of equations). Graham and Hahn (2005) use such exclusion restrictions to identify
the linear-in-means model.*® To illustrate, suppose K =3 and S = 1. In this case it su¢ ces
to assume that one regressor Xy has no contextual exect ( (kl) = 0) and a non-zero direct
ecect ( f:) & 0), while another regressor X, has no direct ecect ( (kl,) = 0) and a non-zero
contextual ecect ( |, & 0). More generally, with K 3, has full rank generically if R
is deOned by the exclusion restrictions that there exist k, k' < K with , =0, , =0
and , 60; , 6 0. So essentially, we get identiCcation if one regressor has no contextual
ecects and another has no direct exects. In contrast, restricting two regressors to both have
no contextual exects but nonzero individual exects would not su¢ ce to make  full rank (this
turns out to be a case where the order condition would be satisCed but the rank condition
is not).



still does not provide enough restrictions for identiOcation (note that increasing S from 1
to 2 increased the number of required restrictions). However, if we impose one exclusion
restriction, such as assuming that one contextual exect (i.e., one element of ) equals zero,
and we impose the constraint that ¥ & @, then that provides enough restrictions to
generically satisfy Theorem 1.

Note that the requirement that ¥ & @ can be tested in this case, since, by equation
(16), @& @ jf and only if m® & m®,

The assumption that and do not vary by environment in this example can be relaxed.
For example, if the direct ecects are the same across groups but the contextual ecects vary,
so W& @ then the full rank condition required for identiOcation will still hold generically
if one of the regressors has no contextual ecect in either environment, that is, if one element
in M and @ equals zero.

For our empirical application in Section 7, we analyze studentsi math test scores. In
that application, we assume two environments corresponding to small (s = 1) and large
(s = 2) class sizes. For identiOcation we allow to vary by class size while Oxing and
This generalizes the models using class size variation to estimate constant peer ecects (e.g.,
Boozer and Cacciola (2001) and Graham (2008)). We then need one additional exclusion



further rank restrictions. The two approaches proposed in this section could precisely serve
this purpose. For example, if the model imposes no contextual ecects, i.e., , = 0 for
k = 1;2;3, we can uniquely solve for ( ; ;; ,; 3) from the linear system (14) provided the
coe¢ cient matrix, after dropping the last three rows, has full rank (four). Alternatively, we
can accommodate contextual ecects but exploit the presence of multiple environments to
add rank restrictions by adopting the second approach proposed above. We note that these
additional required rank restrictions may in practice impose strong additional assumptions
on the model.

4.2 Individual labels

DeOne the label of an individual in a group | to be the row of Y, and X; where that



ability, one could simply randomly label individuals from 1 to n in each group. However,



5 Estimation

To estimate the structural parameters of our model, we use a sample of outcomes and re-



where " is the coe¢ cient matrix formed by stacking (12) and (13) along with the exclusion
restrictions R@ = c, as in Theorem 1.
1

For example, in the case with K = 3 above:
o 1 (0)
4 0 6, 0 0 O
;¢
with R = c representing equalities describing the exclusion restrictions, such as some of the
contextual and direct exects being set to zero. Finally, the remaining structural parameter
is estimated by b = (1  D)b,.

Now consider how this procedure can be generalized to handle multiple environments, so
S 2. To do so, Orst implement steps 1 and 2 separately for each environment s, to get
estimates &6 M s S. Then, for step 3, stack the estimated matrices " with R,
and the estimated vector d with ¢ as in the preceding subsection, to obtain " and ¢. Then
0 is estimated by a classical minimum distance method:

0
1 0 0 0 & 0 b
A 0 0 & b 0 0 O
1 0 0 0 0 & b,
i [ |

R

o 3 O O

6 argrr;in(’\e O= ("o W),

where  denotes the feasible parameter space and ! is a chosen weight matrix that is



function in (17) depends on ’\S) smoothly. As L ¥ 1, this objective function converges in
probability, uniformly over the parameter space, to its limit where "S) is replaced by ﬁs).
Lemma 2 implies this limit is uniquely minimized at the actual (al(f‘); b(ks)). By a standard
argument for the consistency of extremum estimators, (aﬁs);ﬁﬁs)) converges in probability to
(@®;b®) for each s and k. Note that ~ and v consist of known constants, a, b®, and m®
fork Kands S. It then follows from the Slutsky Theorem that 8 is consistent for 6.

In Appendix A, we also explain why 8 is = L-convergent and asymptotically normal.
Essentially, this result comes from the parametric convergence of OLS regression coe¢ cients,

and application of the delta method.

6 Extensions

6.1 Group-level variables and group Oxed ecects

The identiGcation and estimation methods in Sections 4 and 5 can be readily extended to
accommodate group-level regressors. Suppose each group | has a row vector of group-level
characteristics z; 2 RP. For example these could be attributes of the teacher when each
group is an elementary school class.

For the moment, consider just a single environment, so S = 1 and the s superscript is
omitted. Including group level ecects the structural model becomes

yi= + Gy+ z +X +GX +",

with 2 RP being a column vector of additional coe¢ cients. One could interpret as a
source of Tcorrelated ecectsT. Let Assumption 1, 2 and 3 hold with X, replaced by (Xi; z)),
and let part (i) of Assumption 4 hold with X, (1;z x



Now if we have multiple environments, then run the above reduced form regressions
separately for each environment s as before, but now including z, as additional regressors.
We may then identify and estimate 6 from $; © _ fors S andR6 = cas before,

K

and estimate each n© using ).

Finally, this procedure can be further extended to accommodate unobserved group-level
Oxed exects (denoted $,). Essentially, we can remove these Oxed exects by applying group-
level demeaning of the outcomes to the reduced form, prior to recovering the structural
parameters. SpeciCcally, the method consists of replacing the dependent variables y in the
Orst-stage reduced-form regressions with demeaned outcomes y vy, and following the same
steps as before to estimate the structural parameters 8. Then, we can recover the remaining
parameters and by plugging the estimates for @ into the non-demeaned reduced form
in (18), and applying an exogeneity and location normalization assumption that E($, j
z); X1; G)) = 0. Details of this procedure are provided in Appendix F.

n(s) A(s)

— n(s) 1

6.2 Dimension reduction

Again, begin by considering the case of only one environment, so s superscripts can be
dropped. In the Orst-step regressions of



matrices |, for k K. Then, given these |, matrices, one can proceed as before to estimate
the model.

With multiple environments (S > 1), the above regressions would be run separately
in each environment, before proceeding to the later steps of identiOCcation and estimation
as before. Either of the above dimension reduction methods may be especially useful in
applications with multiple environments, where the number of groups in some environments
s could be small relative to Kn®. We adopt the second approach to estimate reduced form
coe¢ cients in our application.

6.3 \ariation in group sizes

Our identiCcation and estimation method assumes that all groups within each environ-
ment s have the same group size n®. But with K individual characteristics in X, this
requires observing enough groups of size N (meaning that L®), the number of groups in
environment






7.1 Data description

We observe a cohort of students who were in kindergarten in 1985-1986. Seventy-nine
public schools were selected to participate in the project, representing various geographic lo-
cations (inner city, urban, suburban or rural). Students and teachers were randomly assigned
to classes with varying sizes of 13 to 25 students.!® Note that our estimator neither requires
nor directly exploits this random assignment; however, random assignment does make some
of our assumptions more plausible. An example is the dimension reduction discussed in
Section 6.2.

Our sample consists of 258 classes that had at least 15 but no more than 25 students each.
The total number of students in the sample is 5,189. We partition the classes in the sample
into S = 2 environments: smaller classes with 15-20 students, and larger classes with 21-25
students according to the original design of the project. In each class, we order the students
by their dates of birth, and use this ordering to label individual students. Table 7.1 reports
summary statistics of the studentsimath test scores in the second and third grade (t2 and t3)
and other individual-level or class-level variables to be used in our empirical analysis. These
include a student® number of days of absence from school (abs), studentst self-reported
motivation scores (mot



the literature, is that the students enrolled in smaller classes had already developed better
math skills than their peers in larger classes before the beginning of the third grade.

Table 7.1. Summary Statistics

Small class size (122 classes) Large class size (136 classes)

mean median std dev range mean median std dev range

3 620.7 618.0 40.88 [487.0, 774.0] 616.6 616.0 40.15 [510.0, 774.0]
t2 0.077 0.287 0.936 [-5.902, 1.042] -0.029 0.287 1.023 [-6.355, 1.042]

abs  6.743 5000  6.643 [0,50] 6.902 5000  6.429 [0, 55]
mot 49.29  50.00  3.990 [17,59] 49.14  50.00  4.013 [18, 60]
tec 13.30 13.00  8.416 [0,36] 14.19 1400  9.079 [0, 38]

Notes: t3: raw scores for 3rd grade math; t2: standardized scores for 2rd grade math (using
overall mean and std dev across all classes); abs: days of absence; mot: self-reported moti-

vation score; tec: teacher experience (in # yrs).

Table 7.2. Test of Equal Means
(small vs. large classes)
p-value p-value
t3 0.001 abs 0.402
2 < 0.001




7.2 Econometric speciOcation

Our model, corresponding to equation (1), is

>
B3; = O+ © -Gl(isj)t3|;j+ jabsyi + ,moty; + 5t2 + Otecy
j

X >
+ 5 i Gl(?j)mOtl;j + 3 i Gl(isj)tzl;j + "L,

where i and j are indices (labels) for ingvidual students, | is an index for class, and (s) is the
environment index. Each summation ; is over all students in the same class | as student
i. For each pair i and j, G,(fj) is the row-normalized unobserved zero or nonzero link between
the members labeled i and j in class I, in environment s. The coe¢ cients to be estimated
are peer ecects ), direct ecects ( 11 2 3), contextual ecects ( ,; 3), intercepts ), and
correlated ecects © (this last is the marginal impact of teacher experience, a group-level
covariate).

The rank restrictions we have imposed for identiOcation are as follows. First, this speci-
Ocation allows abs to have a direct ecect ( ; & 0) but no contextual ecects ( ; = 0). That
is, a student® absence from school acects his own test scores, but has no impact on his
classmates other than through peer ecects. This is an exclusion restriction. Other covariates
mot (self-reported motivation score) and t2 (Grade 2 math score) are not restricted, and so
can have both direct and contextual ecects. Our second rank restriction is that we assume
the individual ecects and contextual ecects are the same in the two environments, small
and large class sizes (which is why and do not have s superscripts above). All other
structural parameters, i.e., the intercept ), the peer ecect ©, and the correlated ecect

®), are permitted to dicer between small (s = 1) vs large (s = 2) classes. These con-



7.3 Estimation results

Table 7.3 reports our structural coe¢ cient estimates. Standard errors are calculated
using B = 1000 bootstrap samples, each of which is constructed by drawing classes from the
original sample with replacement.

Estimates of peer ecects are statistically signiCcant and positive in both small and large
classes, with the estimated coe¢ cient being 0:85 and 0:92 respectively. A t-test for the
equality of peer exects in small and large classes rejects the null of equality at the 1% level.
The magnitudes of our estimates are comparable to earlier Ondings that used the same data
but very dicerent methodologies. For example, using a linear-in-means speciOcation (with
average class size of students in the previous year as an instrument) Boozer and Cacciola
(2001) estimate the peer exects to be 0:86 for the second grade and 0:92 for the third
grade. DeOning links to be a simple function of measured social distance and employing



7.4 SpeciCcation tests



Table 7.4: Tests for Over-identiOcation

p-values
low disp. 0:569
high disp. 0:358

Table 7.5: Wald Test Statistics for Linear-in-Means (d.f.=29)

small class (p-val) large class (p-val)
low disp. 79.915 (<.001) 63.874 (<.001)
high disp. 45.112 (.028) 61.061 (<.001)

Table 7.6: CMD Test Statistics for Poisson Random Network (d.f.=3)

small class (p-val) large class (p-val)
low disp. ~ 49.880 (<.001) 171.327 (<.001)
high disp.  36.954 (<.001) 101.636 (<.001)

Table 7.7: Dicerences in Test Scores under the Linear-in-Means Network

Est. mean p-val
small, low disp 6.054 0.105
large, low disp -9.596 0.060
small, high disp 5.810 0.184
large, high disp -6.405 0.239

Notes: Est. mean : average dicerence in class means of grade
three math scores in a network with equal weights on all friends.

Table 7.8: Impact of Counterfactual Peer Exects

Est. mean p-val
small, low disp 16.198 0.003
large, low disp -11.637 0.001
small, high disp 2.954 0.620
large, high disp -5.301 0.187

Notes: Est. mean : average dicerence in class means of grade
three math scores when peer ecects in small and large classes
are swapped in a network with equal weights on all friends.

33



In the linear-in-means speciQcation, for every group | in each environment s, the adjacency
matrix G,(S) is constant (the same for all I) with all o=-diagonal elements taking the exact same
value. With the s superscript dropped for simplicity, this implies that, for each individual
characteristic k,

k(1 G) '( (I + G)= I +—G (I + (G).

This in turn means that all the o=-diagonal components in |, must be identical. We calculate
Wald test statistics usinga 6 6



a large number of simulated draws r) of the simulated model-implied marginal ecects (I

“Gr () 1(’\kl +,.G, (p)). We deOne the distance between these two matrices as a weighted
sum of the dizerences in average diagonal and o=-diagonal components, respectively. We
estimate p by minimizing @(p). This objective function would asymptotically converge to






Appendix

A. Proofs

Proof of Lemma 1. The outcome of each individual i in group | is

Vi = X i+
where 2.;  Myi") with M,..; being the i-th row in M;, and ;jis a (Kn + 1)-by-1 random
vector:
i [ o (M + (MG i (Mg + KMI;riGI)]O
with ; | being the k-th components in ; . Recall that the joint distribution of (y,; X)) is

directly identiCed in the data-generating process (DGP) under Assumption 1. By construc-
tion, for each individual i,

E Xiyii =E XIXP i +E XM =E X|X|0 E(C),

where the second equality holds because of the exogeneity of (G; X) in Assumption 2, and the
independence between G and X in Assumption 3. Under the non-singularity of E XX
in Assumption 4-(i), we can recover E( ;) from the joint distribution of (y;; X|) as

h i
E( )= E XX/ E Xy

for each i = 1;2;::;;n. Rearranging the components in E( |.;), we identify | =(1 )
and , E[M( 1+ G)]foreachk=1;:;K. O

Proof of Theorem 2. The estimators for reduced form coe¢ cients in Step 1 are OLS
estimators for slope coe¢ cients in a regression. Thus under Assumptions 1-3 and 4-(i),
Ao Emgforallk K. Next, foreach k =1;:K 1



in Step 2 converges in probably to its population counterpart uniformly over (agx;by). That

is, forallk K,
> , X
sup oei(a N 1e]
ak;bi I

2
ii ei(ak k+bk K |)E‘Q

i io

By Lemma 2, the limit function ei(ax +he «  1)e] ?

ij






second step does not introduce additional sampling errors. A useful result for practitioners
is that the Orst-step estimation precision can be enhanced using the dimension-reduction
methods explained in 6.2. For example, in the current simulation example, the dimension-
reduction method replaces n = 10 regressions on n K = 30 explanatory variables with
n n = 100 regressions on K



and ..i(n) denotes the i-th row of the n  n matrix ,(n) and 0 a row vector of (N n)
Zeros.

Let p() denote the probability mass for n; in the population. It then follows that for all
i=1;:5n,

EXXiyii) = IF:T(XIXIO) [Pi(n) i(n) +p) i(n)]
1
D> E[ i(n)]= ECXX) ECKiyi).

Thus E[ ()], with n; integrated out as a random variable, are identiCed and consistently
estimable for k = 1;2;:::; K. Assuming ; ; ; are the same for small and large classes, one
can then proceed and apply the method in Section 4 to estimate the structural parameters
of social exects. We use this method to balance group sizes within the environments of small
or large classes in our application.

D. Dependent networks

In practice, the formation of links on a network may depend on individual characteristics
in the data. We now discuss how to generalize our estimator to deal with this dependence.

Begin by considering a single environment s, where all groups within the environment
have the same size n, and we omit the environment superscript. This procedure can be
applied separately for each environment in the data to obtain reduced form coe¢ cients,
which would then be combined to obtain the structural parameters as in Theorems 1 and
2. Partition individual characteristics into two parts X; = (X?; X{). Let X} denote an
n K. matrix of excluded characteristics, i.e., covariates that acect outcomes but not link
formation; let X denote an n-by-K, matrix that acect individualsioutcomes, link formation
decisions, or both. For example, in our empirical application, we let X{ be studentsi days
of absence from school and test scores from previous years. This assumes friendships are
independent of test scores conditional on observed demographics such as proximity of age.
If we observe all variables that jointly determine network formation and outcomes, then our
method can be applied after conditioning on X?.

There is a large and growing literature on network formation. To just name a few,
Graham (2017), Hsieh, Konig, and Liu (2020), Hsieh, Lee, and Boucher (2020), Leung
(2015), Leung (2020), and Sheng (2020) explicitly model how the links are formed as an
equilibrium outcome. As stated in Graham (2019), 1UItimately, of course, the goal is to
study the formation of networks and their consequences jointly, but such an integrated
treatment remains largely aspirational at this stage™. Our focus in this paper is on peer
ecects with unobserved links, so we simply adopt the conditional independence to deal with
potential endogeneity in network formation.
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Suppose network formation is given by G; = (X?; u;), which does not involve X¢. The
reduced form is:

Z h>< i
E(yijXi) = 1 Mi( I+ (G)Xpek + MIEC(jX); G) dF (GijX)), (19)

where X..x denotes the k-th column in X, as before. Assume (i) " is independent of Xy
conditional on (X{; u;) and (ii) u, is independent of X7 conditional on X{. These conditions
allow the unobserved errors "; and u; to be correlated conditional on X?. Under these
assumptions, E(M,jX;) and E(M,G,jX) is a function of X? but not X7, and
Z z
ME("jXi; GAF (GijX) = MIE("jX{,



Again we start with the case of a single environment where all groups have identical size
n, and we suppress the group subscript | throughout this section to simplify notation. Let G
and W be two possibly dicerent n-by-n adjacency matrices. For each group, peer exects and
contextual ecects operate through two dicerent adjacency matrices G and W



has a unique solution

Ak _ Vi Vi Xk (23)
bj i 3 0
Proof of Lemma E.1. It is straightforward to check that (ajk; bjk) deOned in (23) solves (22).
To see that this is a unique solution, suppose there exists (ajx; Bjk) & (ajk; bjk) such that (22)
holds with (a;k; bjk) replaced by (gjk; Bjx), and
L L] !
ViV 8jk  8jk  _ L &0,
i Dik b 2

where the inequality follows from the rank condition in (20). It then follows that
(ajk ajk) i + bjk bjk 3= E( 1M + 2MW) =0. (24)

The last equality is ruled out by (21). O

Lemma E.1 provides an analog to Lemma (1). It may then be possible to combine
these equality constraints with rank restrictions like exclusions and multiple environments
to construct a corresponding extension of Theorem 1 to attain identiOcation of this extended
model.

F. Group-level Oxed ecects

Our identiCcation strategy can be extended to allow for group-level unobserved het-
erogeneity, i.e., group-level Oxed exects. First, we note that if the group-level unobserved
heterogeneity is mean independent from the group and individual-level covariates in (z; X)
(corresponding to the usual assumption in random ecects models), then the estimation
method described in Section 6.1 can be directly applied, because in this case the conditional
mean of y given (z; X) is as speciCed in equation (18).

Now, consider instead the more general Oxed ecects model. We now have the reduced-
form

z $
=M(X +GX +")+ + +
y ( G )+ 1 T
where s still the intercept, z are observed group characteristics and $ is the unobserved
group heterogeneity (Oxed ecects). Let D =1 C, where C is an n-by-n matrix of identical

entries 1=n, so that Dy returns the within transformation of y. Then under the assumptions
that E("jX;G) =0 and G?X, a within transformation leads to

Dy =DM(X +GX +")) E(DyjX)=E(DM)X +E(DMG)X .
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Thus we can write the reduced-form coe¢ cients for the k-th characteristic from a regression
using the within transformation as

Assume the rank condition in Assumption 5-(i) holds and that
~k & cD forany c 2 R. (25)

This condition can in principle be checked directly using the identiGable ~. It can then be
established that the following system

ak~k+b bK
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