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Abstract

We show that a standard linear triangular two equation system can be point iden-
ti�ed, without the use of instruments or any other side information. We �nd that
the only case where the model is not point identi�ed is when a latent variable that
causes endogeneity is normally distributed. In this non-identi�ed case, we derive the
sharp identi�ed set. We apply our results to Acemoglu and Johnson's (2007) model of
life expectancy and GDP, obtaining point identi�cation and comparable estimates to
theirs, without using their (or any other) instrument.
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is the �rm's labor per unit of capital, and U is unobserved entrepreneurship, which a�ects

both productivity and the chosen level of inputs.

Such models are traditionally identi�ed in econometrics by �nding an instrument, i.e., a

variable that correlates with Y but not "2, or equivalently, a variable that correlates with





an empirical application where we establish that our identi�cation and estimation strategy

is viable even with a very small sample size. Speci�cally, we estimate the Acemoglu and

Johnson (2007) model without using any instruments, and obtain estimates that are very

similar to what they found with their instrument.

Instrumental variables estimation of the model has the advantage that it only requires

assumptions regarding �rst and second moments of the covariates, errors, and instruments.

In contrast, our assumptions regardingU, V, and R are, implicitly, restrictions on all mo-

ments. However, there are a number of mitigating factors. First, some of our results, such

as Lemma 1 below, only rely on lower order moments. Second, our main theorem works via

convolutions, and so our independence assumptions can be relaxed to subindependence, as

de�ned and described in Schennach (2019), who points out that subindependence is arguably

as weak as a conditional mean assumption in terms of the dimensionality of the restrictions

imposed. Third, our independence assumption is actually conditional on other covariates,

so, e.g., the identi�cation can handle arbitrary heteroskedasticity and dependence of higher

moments on regressors. Similarly, if, e.g.,U is ability, then identi�cation only requires ability

to be conditionally (sub)independent from other unobserved factors, conditional on covari-

ates. Nevertheless, given our required assumptions, these results should be most useful when

instruments either don't exist, or might be invalid.

The identi�cation of equations (4) and (5) without instruments has been previously con-

sidered by Rigobon (2003), Klein and Vella (2010), and Lewbel (2012), but these results

neither nest nor are nested by ours because theyrequire that the errors be heteroskedas-

tic, and identi�cation is obtained by imposing varying restrictions on the structure of that

heteroskedasticity.4

A number of special cases of our results do appear in the literature, but all of them assume

 = 0, and so they omit the most important feature of the model in applications like ours.

4Rigobon (2003) and Klein and Vella (2010) impose di�erent parametric restrictions on the error variances,
while Lewbel (2012) imposes a nonparametric restriction. For simplicity we assume homoskedastic errors,
but by conditioning our identi�cation theorems on X , we could allow for general heteroskedastity as well, at
the expense of likely weaker identi�cation and more complicated estimators.
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Kotlarski (1967) is the special case of our model where it is known that = 0 and � = 1,

and in that case Kotlarski's Lemma shows that point identi�cation of the distribution of

all the latent variables holds even under normality. Similarly, Reiers�l (1950) uses a special

case of our model where it is known that = 0 and Y plays the role of a measurement ofU

contaminated by an errorV and establishes conditions under which� would be identi�ed.

As noted in Lewbel (2020), with = 0 and Reiers�l's identi�cation of � , one could rewrite

Reiers�l's model asY = U + V and W=� = U + R=� , and then apply Kotlarski's lemma to

the joint distribution of Y and W=� to identify the distributions of U, V, and R.5

Our results, showing necessary and su�cient conditions to identify the more general

model of equations (4) and (5) with unknown nonzero , turns out to be a di�cult extension.

In particular, the methods of proof used by Reiers�l (1950) and Kotlarski (1967) do not

extend to our problem. The proof of our main result instead relies on similar tools as Khatri

and Rao (1972) or Rao (1966, 1971) (see also Comon's (1994) reference to Darmois (1953)).

Some limitations of our results should be acknowledged upfront. We assume that the

coe�cients  and � are constants. So, e.g., our results do not immediately extend to random

coe�cients, such as treatment e�ects with unobserved heterogeneity, or to nonlinearity in

the dependence ofW on Y. However, this limitation may be mitigated to some extent

by allowing the distributions of the unobservables to be unknown functions of covariates.

Another important restriction on our results is that we requireU to be a scalar. While this

is a common assumption (as in the examples cited earlier), there are other situations where

one might expect a vector of unobservable shocks likeU to a�ect both Y and W, and our

identi�cation results would then not apply. We provide examples in Supplement D. Finally,

5A special case of non-normality is when the componentsU and V are asymmetric. Lewbel (1997)
and Erickson and Whited (2002) exploit asymmetry to construct simple estimators for the Reiers�l (1950)
model. See also Bierens (1981). Other papers propose estimators for models like equations (4) and (5) with
 = 0, by assuming that coe�cients like � are point identi�ed using higher moments, but without explicitly
characterizing when that is possible. Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro,
and Takahashi (2016), and Navarro and Zhou (2017). A related result, showing identi�cation of direction
of causality in models under nonnormality, is Peters, Janzing, and Scholkopf (2017). Generalizations of
Kotlarski's lemma to models with more components (but again still assuming = 0) include Sz�ekely and
Rao (2000) and Li and Zheng (2020). A nonlinear extension of Reiers�l (1950) is Schennach and Hu (2013).
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a limitation for empirical work is that our estimators depend on higher than second moments

of the data, and such moments can lead to very imprecise estimates when sample sizes are

small.

In section 2, we provide a few simple moments that will often su�ce to point identify our

model, and can be used to construct a correspondingly simple GMM estimator. In Section

3, we present our general identi�cation results, including constructing more moments like

those in Section 2, and showing that, with minimal regularity, the model is point identi�ed

as long as bothU and V are not normal. In sections 4 and 5 we derive the sharp identi�ed

set when eitherU or V is normal, and derive some inequalities regarding our model relative



Assumption 2 The unobserved real valued random variablesU, V, and R are mean zero

and mutually independent,6 with unknown distributions.

Assumption 3 R has �nite variance, and U and V each have �nite fourth moments.



Proofs are all in Supplement A. The proof of Lemma 1 works by substitutingW � Y =

�U + R and W � �Y = � �V + R into equations (7) and (8), and then uses the mutual

independence ofU, V, and R to verify that these equations hold.

Lemma 1 provides two equations in the two unknowns� and  . If we solve the �rst

equation for � and substitute that into the second, we obtain a quadratic in . The sign

restriction that � > 0 then determines which root is the correct one for .

We later provide the formal conditions under which these two equations su�ce to point

identify � and  . The main condition, derived in Theorem 1 below, is equation (21). Equa-

tion (21) shows that the main cases in which equations (7) and (8) by themselves fail to

provide point identi�cation are when U and V have the exact same distribution, or when

both are symmetrically distributed, or if either U or V is normally distributed. We later

show that in�nitely many additional equations in � ,  , Y and W can be constructed, based

on higher moments ofY and W than those used in Lemma 1. These higher moments can

help identify � and  in applications where Lemma 1 does not su�ce.

A simple estimator for � and � can be constructed by rewriting equations (7) and (8) as

moment conditions, and applying standard method of moments or GMM. One can immedi-

ately check that these equations take the form

E (Y W � � yw ) = 0, E(Y 2 � � yy) = 0 (9)

E [(W � Y ) (W � ( + � ) Y) Y] = 0 (10)

E
�
(W � Y ) (W � ( + � ) Y)

�
Y 2 � � yy

�
� 2 (� yw � � yy) (W � ( + � ) Y) Y

�
= 0 (11)

where � yw = E (Y W) and � yy = E (Y 2). The parameters� yw and � yy are estimated along

with  and � by putting equations (9), (10), and (11) into any standard GMM estimation

routine. One could replace� with eb in these equations to impose the sign restriction that

� > 0.

Lemma 1 uses up to fourth moments of the data. Based on results derived in the next

section, in Supplement B we provide additional equations (using up to �fth moments) that
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can provide overidenti�cation of  and � , or point identi�cation in some cases where Lemma

1 does not su�ce.

Let � 2
U , � 2

V , and � 2
R denote the variances of the error componentsU, V, and R. It may

be of economic interest to estimate these variances, to identify how much of the variance

of the model errors is due to unobserved abilityU versus the idiosyncratic components

V and R. From the model we haveE ((W � Y ) Y) = �� 2
U , E (Y 2) = � 2

U + � 2
V , and

E
�
(W � Y )2�

= � 2� 2
U + � 2

R , which implies

� 2
U = E ((W � Y ) Y) =� , � 2

V = E
�
Y 2

�
� � 2

U , � 2
R = E

�
(W � Y )2�

� � 2� 2
U (12)

Given estimates of� and  , we can replace the expectations in equation (12) with sample

averages to estimate these variances.

Alternatively, we can estimate these variances jointly with the model parameters by

observing that

� yy = � 2
U + � 2

V , � yw = �� 2
U + 

�
� 2

U + � 2
V

�
: (13)

So, in equations (9), (10), and (11) we can replace� yy and � yw with their expressions in

equation (13), and apply GMM using those equations along with the additional equation

E
�
(W � Y )2 � � 2� 2

U � � 2
R

�
= 0 (14)

to simultaneously estimate� ,  , � 2
U , � 2

V , and � 2
R . We can further replace� 2

U with � 2
U = e� U

and similarly for � 2
V and � 2

R , to impose the constraint that variances are positive. See

Supplement B for details on these moments.

Higher moments ofU, V, and R can be estimated analogously. Alternatively, as discussed

later, once we have identi�ed and estimated� and  , we can apply Kotlarski's Lemma to

recover the entire distributions ofU, V, and R.

We can also easily extend this identi�cation and associated estimation to allow for co-

variates. Suppose we have the model

Y = b0
1X + U + V (15)
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W = Y + b0
2X + �U + R (16)

where X is exogenous and is therefore uncorrelated withU, V, and R. The reduced form

for W is now

W = ( b 1 + b2)0X + (  + � ) U + V + R

So we can estimate the coe�cient vectorsb1 and b2 along with  and � by replacing Y and

W in equations (9), (10), and (11) withY � b0
1X and W � (b 1 + b2)0X , respectively and

estimate those moments along with the moments

E
��

W � (b 1 + b2)0X
�

X
�

= 0, E ((Y � b0
1X ) X ) = 0 (17)

The complete set of moments for estimating this model via GMM, which we use in our

empirical application, is provided in Supplement B.

Although we did not �nd this to be the case in our application, when GMM models are

substantially overidenti�ed (many more moments then parameters) it is sometimes preferable

to only use a subset of available moments for estimation. Since our estimator takes the form

of standard GMM, in these cases the existing literature on empirical choice of moments

in standard GMM estimation might be applied. See, e.g., Andrews and Lu (2001), Caner

(2009), and Liao (2013).

For simplicity, these estimators assumed the errorsU, V, and R are homoskedastic, and

similarly have higher moments that do not depend onX . This could be relaxed to allow

higher moments of these errors to depend in unknown ways onX , by letting the assumptions

of Lemma 1 hold conditional onX , thereby replacing the unconditional moments of equations

(7) and (8) with conditional moments. Corresponding estimators would then, however, be

much more complicated, and parameters like the error variances would need to be replaced

by nonparametric functions ofX .

3 General Point Identi�cation

We now provide a more general and systematic analysis of the identi�cation of our model,

using more information than the low order moments of Lemma 1. We provide four main
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results. First, we show that it is possible to construct in�nitely many moments like those

of Lemma 1, which can be used to construct simple GMM estimators, and we give the

conditions under which these moments point identify the coe�cients� and  (equivalently,

� and  ). Second, we apply Kotlarski's lemma to point identify the distributions ofU, V,

and R given point identi�cation of � and  . Third, we demonstrate that, using the entire

joint distribution of Y and W (instead of just some moments) the only case where point

identi�cation is not possible is whenU or V (or both) are normal. Finally, in the not point

identi�ed case, we fully characterize the sharp identi�ed set.

We make extensive use of the characteristic function and its logarithm. Knowing the

(log) characteristic function of a vector of random variables is equivalent to knowing the

joint distribution of those variables (Theorem 3.1.1 in Lukacs (1970)).

De�nition 1 Given two random variablesY and W, let � Y;W (�; � ) � E
�
ei�Y + i�W

�
de-

note their joint characteristic function. Similarly for a single random variable, let� Y (� ) �

E
�
ei�Y

�
. Moreover, let � Y;W (�; � ) � ln � Y;W (�; � ) and � Y (� ) � ln � Y (� ) denote log char-

acteristic functions (which are also called cumulant generating functions).

De�nition 2 Given two random variablesY and W, de�ne the cumulant of order k; `

(Lukacs (1970), p. 27) as

� k;`
Y;W �

�
@k+ ` � Y;W (�; � )

i k+ `@�k@�̀

�

� =0 ;� =0

:

Similarly for a single random variable, de�ne the cumulant of orderk as

� k
Y �

�
@k � Y (� )

i k@�k

�

� =0

:

All cumulants can be expressed in terms of standard moments, as obtained by an explicit

di�erentiation of the log characteristic function and by exploiting the characteristic function



characteristic functions as well as the corresponding cumulants are directly related, e.g.,

� Y (� ) = � Y;W (�; 0), � Y (� ) = � Y;W (�; 0) and � k
Y = � k;0

Y;W .

With these tools in hand, we are ready to state a general identi�cation result based on

moment constraints. As in Lemma 1, we start by rewriting the model of equations (4) and

(5) in the reduced form of equations (4) and (6), and focus on the parameters� and  .

Theorem 1 Let Assumptions 1, 2, and Equations (4) and (6) hold. Assume�1 <  <

� < 1 and let

M p (�;  ) � � 1+ p;2
Y;W � � 2� 3+ p

Y � ( + � )
�
� 2+ p;1

Y;W � � � 3+ p
Y

�
: (18)

Let q;~q 2 N � f 0; 1; : : :g with q < ~q. If E
h
jUj~q

i
, E

h
jV j~q

i
and E

h
jRj~q

i
exist and

� 3+~q
Y � 2+ q;1

Y;W 6= � 3+ q
Y � 2+~q;1

Y;W (or, equivalently, if � 3+~q
U � 3+ q

V 6= � 3+~q
V � 3+ q

U ), then the moment con-

straints

M q (�;  ) = 0 (19)

M ~q (�;  ) = 0 (20)

point identify the parameters of the model as(�;  ) = ( � + ; � � ), where

� � =
F 3012

2F 3012





and M 1 (�;  ) = 0, requires that � 4
U � 3

V 6= � 4
V � 3

U , or equivalently

�
E

�
U4

�
� 3

�
E

�
U2

�� 2
�

E
�
V 3

�
�

�
E

�
V 4

�
� 3

�
E

�
V 2

�� 2
�

E
�
U3

�
6= 0: (21)

The left-hand side of (21) turns out to be proportional to the determinant of the Jacobian

of the moment conditions (7) and (8) evaluated at the true value of the parameters:

�
�

E [V 3] � E [U3]
E [V 4] � 3 (E [V 2])2 � E [U4] + 3 ( E [U2])2

�
: (22)

This connection is expected, since having a nonsingular Jacobian at the true parameter

values is a necessary condition for point identi�cation.

Condition (21) is violated, for instance, if eitherU or V is normal, or if both U and V are

symmetric, or if both U and V have the exact same distribution. If we add the additional

moments corresponding toM 2 (�;  ) = 0, then point identi�cation only requires that at

least one of the inequalities �4U � 3
V 6= � 4

V � 3
U , � 5

U � 3
V 6= � 5

V � 3
U , or � 5

U � 4
V 6= � 5

V � 4
U , hold. For

example, if the second of these holds then Theorem 1 applies withq = 0 and eq = 2. If more

than one of these inequalities holds, then we are generally overidenti�ed.

Once the parameters� and  have been identi�ed, the full distribution of all unobserv-

ables can be determined under the following Assumption.8

Assumption 5 The characteristic functions ofU; V and R are nonvanishing on the real

line.

Corollary 3 If Assumptions 1, 2, 5 and Equations (4) and (6) hold,E [jY j] < 1 and if

�;  are point identi�ed, then the distributions of U, V and R are point identi�ed from the

joint distribution of Y and W through

� V (� ) =
Z �

0

E
h
iY ei� W � �Y

 � �

i

E
h
ei� W � �Y

 � �

i d�E



A more explicit expression for the distributions of these unobserved variables can be

obtained by an inverse Fourier transform. For instance, ifV admits a density, it is given by

f V (v) = (2 � )� 1
Z 1

�1
exp (� V (� )) e� i�v d� (24)

and similarly for the other densities. More general distributions (e.g. discrete and/or sin-

gular) can be recovered as well, if equation (24) is interpreted in the appropriate measure

theoretic sense.

Although Theorem 1 is quite general, it does require the condition �3+~q
U � 3+ q

V 6= � 3+~q
V � 3+ q

U

to deliver identi�cation, so it is natural to ask whether this is fundamentally necessary. It is

in fact possible to formulate an estimation strategy that relaxes this condition. For instance,

as discussed above, one could stack the moment conditions of the form (19) and (20) obtained

with di�erent values of (q;~q). The resulting moment conditions would only fail to identify

(�;  ) if the condition � 3+~q
U � 3+ q

V 6= � 3+~q
V � 3+ q

U fails simultaneously for all the choices ofq and

~q considered.

An even more general strategy could be to start from the fundamental relationships be-

tween the log characteristic functions of the observables and unobservables (�Y;W (�; � ) =

� U (� + �� ) + � V (� + � ) + � R (� )) and cast identi�cation as an optimization problem that

minimizes deviations between the observed quantities (i.e. �Y;W



An estimator based on Equation (25) would be obtained replacing �Y;W (�; � ) by its sample

analogue and trimming or downweighting the high-frequency tails in the integral.

The question remains, do there exist situations where neither this nor any other estimator

can consistently estimate the model, due to lack of point identi�cation? The following

theorem fully addresses this question, by showing that there exist cases that are not point

identi�ed. However, all such cases are whenU or V (or both) are normal.

This di�ers from, and is simpler than, Reiers�l's (1950) well-known result in linear univari-

ate errors-in-variables models, where the nonidenti�ed cases arise when the model contains

normal factors (see below). However, the required methods of proof di�er signi�cantly. For

instance, the presence of two slope parameters� and  (instead of one), and the presence

of both latent variables U and V in both equations of the model, prevents us from using

Reiers�l's proof method, which is based on the fact that two functions of di�erent variables

that are equal to each other must be constant. In our case, we have sums of many di�erent

functions of di�erent variables on each side of an equality, and possible cancellation between

terms that complicates the argument signi�cantly.

Assumption 6 E
�
jUj3

�
; E

�
jV j3

�
; E

�
jRj3

�
are �nite.

Theorem 4 Let Assumptions 1, 2, 5, 6 and Equations (4) and (6) hold and assume that

�1 <  < � < 1 . If neither U nor V are normally distributed, then�;  are uniquely

determined by the joint distribution ofY and W by Equation (25).

Note that U or V normal implies Y has full real line support, so having the support of

Y be bounded is a simple su�cient condition for point identi�cation. In the next section,

we address what happens when eitherU or V (or both) are normally distributed.

4 Set Identi�cation

In the case where Theorem 4 does not apply, so that the parameters are not point

identi�ed, the objective function of Equation (25) is maximized over a set rather than at a
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single point. In order to precisely characterize thisidenti�ed set



exp (� � 0� �=2) and checking if the result is a valid characteristic function (e.g., by verifying if

the inverse Fourier transform is a nonnegative measure). An alternative check for the valid-

ity of a given function � (� ) to be a valid characteristic function can be based on Bochner's

Theorem (Theorem 4.2.2 in Lukacs (1970)):� is a characteristic function i�

nX

i =1

nX

j =1

ci c�
j � (� i � � j ) � 0 for all c1; : : : ; cn 2 C for all � 1; : : : ; � n 2 R for all integer n � 1

(Bochner's Theorem also includes the conditions that� (� ) be continuous and� (0) = 1 but

these are automatically satis�ed in our context.)

Using Lemma 2, we can decompose the observedZ = ( Y; W) into Gaussian (g) and

non-Gaussian (n) factors

(Y; W) = ( Yg; Wg) + ( Yn ; Wn ) (27)

This decomposition can be accomplished without the knowledge of� or  . The non-Gaussian

or Gaussian nature of the two factors is important in our context, because it is associated

with the features that can or cannot be point-identi�ed. This type of decomposition is not

a purely theoretical construct; it can be empirically implemented. Independent Component

Analysis techniques, which are widely used in signal processing, (see Hyv•arinen and Oja

(2000) for a review) speci�cally rely on such decompositions into Gaussian and non-Gaussian

components.

De�ne

Bs =
E [WsYs]
E [Y 2

s ]
(28)

Ds =
E [W 2

s ] E [Y 2
s ] � (E [WsYs])

2

(E [Y 2
s ])2 � 0 (29)

where the subscripts is either set to \g" , or to \ n" , or is removed. We can now state our

set-identi�cation theorem:

Theorem 5 Let Assumptions 1, 2 and Equations (4) and (6) hold and assume thatE [Y 2],

E [W 2], E [R2] < 1 and that �1 <  < � < 1 . Then, the following bounds (illustrated in

Figure 1) are sharp:
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1. If both U and V are Gaussian (andE [Y 2] > 0), then

� � Bg (30)

Bg �
Dg



This looser bound is also related to the measurement error bounds in Frisch (1934). If one

is willing to rely on this relaxed bound, then a simple GMM estimator for the resulting

identi�ed set could be obtained based on the moment conditions

E
�
� 2� 2

U +  2
�
Y 2 � � 2

U

�
+ � 2

R � W 2
�

= 0 (36)

E
�
�� 2

U + 
�
Y 2 � � 2

U

�
� Y W

�
= 0 (37)

while optimizing over �; ; � 2
U ; � 2

R , subject to the constraints < � (equivalent to � > 0),

� 2
U � 0 and � 2

R � 0. These moment conditions are obtained from Equations (66) and (67)

in the proof of Theorem 5, without extracting the Gaussian parts. The bounds of Corollary

6 are also obeyed in the case of point identi�ed models, since they are obtained solely from



heterogeneity). In particular, in the returns to schooling context, we would expect both�

and  to be positive (because unobserved abilityU should a�ect schoolingY and wagesW in

the same direction, and increased schooling should increase wages). By the above analysis,

this in turn means that we would expect 0<  � B .

However, as noted by Card (2001), most returns to schooling empirical applications

yield estimates of , using instrumental variables methods, that are greater thanB, which

contradicts this inequality and hence also contradicts the model. One possible explanation for

this contradiction is that, in the returns to schooling context,Y may also contain signi�cant

measurement error. Standard attenuation bias under classical measurement error implies

that the ordinary least squares coe�cient B is biased towards zero relative to , which if

0 <  would imply B <  . If the model is correct for returns to education, but in additionY

is mismeasured, thenB could be either larger or smaller than , depending on the relative

magnitude of the measurement error.
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corresponding to Lemma 1, given by equations (77), (78), and (79) (without covariates, so

eY = Y and fW = W), as given in Supplement B. The over-identi�ed estimator is GMM using

these same equations, plus equations (81) and (82) of Supplement B.

Tables C1 to C4 of the Supplement report results from designs 1 to 4, respectively. Each

Table has four panels, corresponding to the two di�erent GMM estimators, each with the two

di�erent sample sizes. We report estimates of , � , the error component variances� 2
U , � 2

V ,

and �





this application, with only 47 countries. Nevertheless, AJ's estimates of are statistically

signi�cant. 12

Now suppose we had not observed predicted mortality, or we are uncertain of its validity

as an instrument. We can instead consider applying our GMM estimators. First, consider

the distribution of Y. Assuming (measured) life expectancy is bounded away from zero, log

life expectancy is bounded, which su�ces for point identi�cation since it rules outU or V

being normal.13 We therefore attempt to apply our GMM estimators.

In Table 1, we report two sets of GMM estimates along with AJ's 2SLS results. Columns

labeled GMM1, GMM2, and GMM3 are GMM estimates of equations (15) and (16), which

do not make use of the predicted mortality instrument in any way. Speci�cally, these are

estimates based on the over-identifying set of moments given by equations (77) to (82) in

Supplement B. The last three columns of Table 1 then give GMM estimates that use both

our over-identifying set of moments and the additional moment given by AJ's instrument

(as discussed at the end of Supplement B).14

Panel A in Table 1 reports the main parameter of interest , and also reportsb2, the

other covariate coe�cients in equation (16). The variables in columns (4) and (7) have

been demeaned so there is no constant.15 Our main takeaway from Panel A of Table 1 is

that our estimates of are quite comparable to AJ's. In GMM1 and GMM2, the estimates

of  are � 1:984 and � 1:241, virtually the same range as AJ's 2SLS estimates, and are

12Our standard errors in columns (1)-(3) of Table 1 di�er from those reported by AJ. AJ's estimates are
from ivreg in Stata 9. We use ivregress 2sls, which replaced ivreg as of Stata 10. ivreg and ivregress can
give di�erent robust standard error estimates, becauseivreg uses HC1 (MacKinnon and White 1985) robust
standard errors while ivregress 2slsuses HC0 (Huber-White). Also, to reduce the number of coe�cients in
GMM estimation, we di�erenced the data while AJ used level data with �xed e�ects. Since T=2, these are
asymptotically equivalent estimators.

13More heuristically, if Y is close to normal, then it may be that U or V is close to normal. Y has a
skewness of 0:170 and a kurtosis of 1:791, which is reasonably far from normal in terms of the low order
moments our GMM estimator is based on. Thep-value of a Shapiro-Wilk test of normality of Y is :02,
rejecting normality, and even lower if one tests the residuals after regressingY on either of the covariates in
X .

14These GMM models are estimated in Stata, using the vce(robust) option to compute standard errors.
15In Supplement B: Moments for GMM Estimation, it is noted that \For the model without covariates,

one can replaceb1 and b2 with zero in the above expressions, and drop equation (80). Note that in this case
Y and W should be demeaned." In columns (4) and (7), we demeanedY and W so b1 and b2 are zeros.

24



statisically signi�cant. GMM3 gives an estimate of a lower magnitude� 0:383, but this

estimate is statistically insigni�cant with a very large standard error, suggesting that our

higher moment based estimator is imprecise for this particular combination of covariates and

small sample size. The last three columns of Table 1, which combine both our moments and

the AJ instrument, give estimates very close to those of AJ, with somewhat smaller standard

errors, which is exactly what one would expect to see if both sets of moments are valid and if

AJ's instrument is strong. In the bottom row of Table 1 we report Hansen's J-test; we do not

reject validity of the joint set of overidentifying restrictions in any of the GMM estimates.

Panels B and C of Table 1 provide the other estimated parameters of the model. Panel

C gives the estimatedb1 coe�cients from equation (15), while Panel B gives the estimates

of � and the estimated variances of our error components.� appears to be di�cult to

precisely estimate, with large standard errors.16 In the speci�cations where is statistically

signi�cant, the variance of U (the source of endogeneity in the model) is much smaller than

the variances of the idiosyncratic componentsV and R, but very precisely estimated with

small standard errors.

Later tables have the same format as Table 1, providing additional results. In Table 2,

we re-estimate the model using the exactly identi�ed set of moments from Lemma 1. As

expected with fewer moments, these estimates are less e�cient, and turn out to be quite a

bit noisier than those of Table 1. GMM5, with the quality of institutions as the covariate,

is still reasonably comparable to AJ with of � 1:401, while now both GMM4 and GMM6

are insigni�cant and more variable. The estimates combining these moments with AJ's

instrument behave as before.

We also perform a number of robustness checks in Supplement D, using alternative out-

come variables that AJ considered in their Tables 8-9. These additional outcomes are log

population, log births, percentage of population under age 20, log GDP, and log GDP per

working age population. Some of the alternative outcomes su�er from the issue thatU might

16In contrast � is, like  , much more precisely estimated, but apparently the di�erence� � � �  is harder
to pin down.
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also contain measurement error, and in those cases, our identi�cation results would not ap-

ply. The results of our GMM estimators with other outcomes are generally more erratic than

with log per capita GDP. The estimates that combine our moments and the AJ instrument

remain comparable to AJ's 2SLS estimates.

We conclude that, in all speci�cations where the standard errors were small enough to

yield statistically signi�cant results, our estimates based on higher moments, without side

information, are very close to those obtained by AJ that required an instrument.

8 Conclusions

We have shown that a standard linear triangular structural model is generally point

identi�ed, without an instrument or other side information that is generally used to identify

such models. We illustrate the result with Monte Carlo simulations and in an empirical

application. Our application shows that, without using an instrument, GMM estimation of

moments based on the model yields estimates close to those that were obtained by previous

authors using an instrument. Even when instruments are available, our estimator could be

usefully combined with instrument based moments to either increase estimation precision by

adding more moments to the model, or to provide overidentifying moments that might be

used for speci�cation testing.

What makes point identi�cation possible is the assumed error structure, which takes the

standard form of a scalar common componentU in each equation, plus additional scalar

idiosyncratic componentsV and R. One goal for future work could include deriving alter-

native estimators for the model. These could include estimators that allowU, V, and R

to depend nonparametrically on covariatesX (e.g., allowing heteroskedasticity of unknown

form), and estimators that make direct use of all the information in Theorem 4, perhaps

based directly on characteristic functions rather than moments. Other possibilities for fur-

ther work include extending the model to more equations, allowing the common component

U to a�ect outcomes nonlinearly, and extending the model to also allow for measurement
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error in Y. Based on Card (2001), this last extension would likely be needed for returns to

education applications.
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Figure 1: Identi�ed set of Theorem 5 for (a) Case 1 and (b) Case 2 (Case 3, analogous to
Case 2, is not shown).
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