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Abstract

Extending preferences over simple lotteries to compound (two-stage)
lotteries can be done using two different methods: (1) using the Re-
duction of compound lotteries axiom, under which probabilities of the
two stages are multiplied; (2) using the compound independence ax-
iom, under which each second stage lottery is replaced by its certainty



compound lotteries axiom (RCLA), that is, by multiplying the probabilities
of the various final outcomes. For example, if X = (. . . ; xi, pi; . . .) and Y =
(. . . ; yj , qi; . . .) are lotteries, then the compound lottery Q = (X,α;Y, 1−α) is
viewed as αX+(1−α)Y = (. . . ; xi, αpi; yj , (1−α)qj ; . . .) (see Samuelson [27]).
De Finetti’s [13] went even further, claiming that probabilities over proba-
bilities are just probabilities, therefore such compound lotteries do not take
us out of the original space of lotteries. Denote by Q

R
the reduced form of

the compound lottery Q using RCLA.
Alternatively, one can use the compound independence axiom (CIA) to

reduce compound lotteries recursively, where Q = (X,α;Y, 1−α) is assumed
to be indifferent to the simple lottery (c(X), α; c(Y ), 1−α) over the certainty
equivalents of X and Y . Kreps and Porteus [18] and Segal [28] presented
a formal analysis of this procedure. Numerous experiments show this is
the way many decision makers view compound lotteries and that RCLA is
widely violated. See, e.g., Halevy [16], Chew, Miao, and Zhong [10], Gillen,
Snowberg, and Yariv [14], Abdellaoui, Klibanoff, and Placido [1], and Epstein
and Halevy [11]. Denote by Q

CI
the reduced form of Q using CIA.

If preferences are expected utility, then for all Q, Q
R
∼ Q

CI
and expected

utility is the only theory to have this property. Moreover, each of the two
methods without the other may seem to violate some kind of monotonicity.
For example, suppose that X is indifferent to Y , yet 1

2
X + 1

2
Y is preferred to

both, hence c(1
2
X + 1

2
Y ) > c(X) = c(Y ). Consider the compound lotteries

Q = (X, 1
2
;Y, 1

2
) and Q′ = (1

2
(X − ε) + 1

2
Y, 1) where ε > 0 is sufficiently

small so that c(1
2
(X − ε) + 1

2
Y ) > c(X) = c(Y ). Then (c(1

2
(X −



two rounds will reduce it to p2 < p1





Segal [28]).

Reduction of Compound Lotteries Axiom (RCLA) For all Q ∈ Q,

Q ∼ Q
R

:= (. . . ; xi,j , qipi,j ; . . .)

Compound Independence Axiom (CIA) For all Q ∈ Q,

Q ∼ Q
CI

:= (c(X1), q1; . . . ; c(Xm), qm)

where c(X), the certainty equivalent ofX, is given by δc(X) = (c(X), 1) ∼
X.

Consider now the case in which n replicas ofQ = (X1, q1; . . . ;Xm, qm) ∈ Q
are simultaneously played. Let Qn be the two stage lottery where the first
stage determines for each Q which lottery Xi will be played in the second
stage. This is done for each lottery Q independently of the other lotteries.
In the second stage, the decision maker is facing the sum of n lotteries, each
taken from the set {X1, . . . , Xm}. There are H := mn (m to the power of
n) such possible sequences, denote their sums Ynj, j = 1, . . . , H, with the
corresponding probabilities µnj, which are the product of the corresponding
qi probabilities. Observe that being the sum of simple lotteries, each Ynj is
a simple lottery. We thus obtain that

Qn = (Yn1, µn1; . . . ;YnH , µnH) (1)

The two-stage lottery Qn yields the lotteries Ynj with probabilities µnj,
j = 1, . . . , nH. For example, let X1 = (−1, 1

2
; 0, 1

2
), X2 = (−3, 1

2
; 0, 1

2
),

Q = (X1,
1
2
;X2,

1
2
), and n = 2. The four possible sequences are Y21 =

X1 + X1 = (−2, 1
4
;−1, 1

2
; 0, 1

4
), Y22 = X23 = X1 + X2 = X2 + X1 =

(−4, 1
4
;−3, 1

4
;−1, 1

4
; 0, 1

4
), Y24 = X2 + X2 = (−6, 1

4
;−3, 1

2
; 0, 1

4
), and Q2 =

(Y21,
1
4
; . . . ;Y24,

1
4
).

The lottery (Qn)
R

is obtained by taking the weighted mixture of these
lotteries, that is,

∑

j µnjYnj. The lottery (Qn)
CI

is obtained by replacing
each Ynj with its certainty equivalent. For simplicity, we denote them Qn

R

and Qn
CI

.
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3 Main Result

Our analysis depends on a technical wrapping assumption which we later
show to be satisfied by most theories in the literature under conditions that
can easily be justified.

Wrapping: A preference relation � satisfies wrapping if it can be repre-
sented by a functional V with the following property: There exist α > 1 and
β >



Theorem 1 assumes that the expected utility (with respect to ϕv) of Q̄
R

is

different from that of Q̂
R
. This does not mean that if E[ϕv(Q̄R

)] = E[ϕv(Q̂R
)],

then there exists n∗ such that for all n > n∗, Q̄n
R
∼ Q̂n

R
and Q̄n

CI
∼ Q̂n

CI
, or

even that Q̄n
R
� Q̂n

R
iff Q̄n

CI
� Q̂n

CI
. The reason is that unless one sequence

is increasing and the other decreasing, the fact that lim
n→∞

an = lim
n→∞

bn doesn’t

imply any specific relation between an and bn (see the proof of the theorem).
On the other hand, consider a compound lottery Q ∈ Q̃. The set of

lotteries Q̄
R

such that E[ϕv(Q̄R
)] 6= E[ϕv(QR

)] is open and dense in X . In
other words, if E[ϕv(Q̄R

)] 6= E[ϕv(QR
)], then this inequality holds for all

sufficiently small perturbations of Q and Q̄, and if E[ϕv(Q̄R
)] = E[ϕv(QR

)],
then almost all small perturbations of either Q or Q̄ will break this equality.

Given two lotteries Q̄ and Q̂, Theorem 1 needs to know the shape of v
as x → −∞. But if Q̄

R
dominates Q̂

R
by first-order stochastic dominance,

then regardless of the exact form of v, the expected utility of Q̄
R

is higher

than that of Q̂
R
. Therefore, not only is Q̄n

R
preferred to Q̂n

R
for all n, but for

a sufficiently large n, Q̄n
CI

is also preferred to Q̂n
CI

. Formally:

Conclusion 1 If Q̄
R

first-order stochastically dominates Q̂
R
, then for every

� satisfying the assumptions of Theorem 1 and for sufficiently large n, Q̄n
R
≻

Q̂n
R

and Q̄n
CI

≻ Q̂n
CI

.



than differentiability and implies weak Gâteaux differentiability (see [9]).5

Claim 1 If the preference relation � can be represented by an RDU func-
tional where g is Lipschitz, then it satisfies wrapping.

Violations of the assumption that g is Lipschitz lead to doubtful behavior.
Since g is concave, being non-Lipschitz implies that lim

ε→0

g(ε)
ε

= ∞. For a

given outcome y



Weighted Utility

The WU model (see Chew [7]) is given by

V (Y ) =

∫

w(t)
∫

w(t)dFY (t)
· v(t)dFY (t)

where w is continuous and zero is not in its image, hence wlg, w > 0. We
assume that V (δz) = v(z) belongs to U . Chew [7, eq. (5.2)] showed that
−w′

w
increases the meas



Quadratic Utility

The general quadratic model is of the form



the inequality V (Yk) > αE[v(Yk)]−βv(ȳ) fails to hold for k sufficiently large.
Theorem 2 below shows that even though the functional of eq. (4) does not
satisfy wrapping, the conclusion of Theorem 1 holds for the CU model as
well.

Let � be CU where W ∈ Ω is generated by the utility functions u1, . . . , uℓ.

Let ā := max
j

{auj
} where auj

= lim
x→−∞

−
u′′
j (x)

u′
j(x)

, and let ϕ
W

(x) = −e−āx.

Theorem 2 Suppose that the preference relation � is CU where W ∈ Ω
and let Q̄, Q̂ ∈ Q̃. If E[ϕ

W
(Q̄

R
)] > E[ϕ

W
(Q̂

R
)], then there exists n∗ such that

for all n > n∗, Q̄n
R
≻ Q̂n

R
and Q̄n

CI
≻ Q̂n

CI
.

Theorem 2 assumes that W is generated by a finite set of utility functions.
But it can be extended to the case where all the generating functions exhibit
(weakly) decreasing absolute risk aversion, even if this set of functions is not
finite, provided ā = sup{au : u ∈ W} <∞.

Another case is Gul’s [15] model of disappointment aversion. Cerreia-
Vioglio, Dilleberger, and Ortoleva [5] show that it is a CU model where
W is the family of its local utilities. This set is not the convex hull of a
finite number or utilities (unless b = 0), and as these local utilities are not
differentiable, they are not in U , yet this model satisfies the conclusion of
Theorem 2 (see Claim 3 above).

6 Dutch Books

Violating any of the two methods for analyzing two-stage lotteries exposes
decision makers to Dutch books. De Finetti [12] claims that a decision maker
whose preferences violate the basic laws of probability theory is exposed
to manipulations that inevitably will lose him money. Markowitz [22] and
Raiffa [25] presented arguments against changing preferences while moving
down a decision tree.

A careful analysis of these arguments shows that they rely on some further
assumptions and therefore may not be prove that individual decision makers
must follow both RCLA and CIA (see Machina [20] and McClennen [21] for
arguments regarding Markowitz and Raiffa’s support of dynamic consistent
decision rules and Border and Segal [2, 3] for an analysis of Dutch books
involving violations of probability theory). But even if the Dutch books are
valid, they can hardly be understood as practical arguments. At best they
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are theoretical arguments that can be used to persuade a reluctant decision
maker to follow expected utility theory. But it is certainly conceivable to
imagine willingness to pay a hypothetical price to satisfy an intuitive feelings
regarding the proper simplification of a two stage lottery.

The example presented in the introduction is an extended version of the
Dutch book argument and seems to weigh against violations of RCLA and
CIA performed by the public official. It is hard to justify mathematical
mistakes done by such officials, and they will have hard time explaining why
they chose an option where all possible outcomes are inferior to an alternative
option. Theorems 1 and 2 show that none of these arguments can be raised in
a large society. For sufficiently large n, the official’s decisions are consistent
with both RCLA and CIA.



0, and γ such that for all Y ∈ X , E[v(Y )] > V (Y ) > αE[v(Y )] − βv(ȳ) + γ,
where v(z) := V (δz) and ȳ is the highest possible outcome in Y .

Note that if the preferences � with V, α, β, γ are as in the definition of
wrapping∗, then so are � with V + ζ, α, β, γ + ζ(1 − α + β) for all ζ. We
therefore assume wlg that v(0) = V (δ0) = 0.

Recall that av = lim
x→−∞

− v



as c(Y ), the certainty equivalent of Y . Let b := v(x̄). By the wrapping∗

assumption there exist α > 1, β > 0, and γ such that

V (Y ) > αE[v(Y )] − βv(ȳ) + γ

> αE[v(Y )] − βv(nx̄) + γ (9)

> αE[v(Y )] − βnb+ γ

where the last inequality follows from the concavity of v and the fact that
v(0) = 0. Hence, using inequality (9) and the fact that the highest possible
outcome in Qn

CI
cannot exceed nx̄, we get

V (Qn
CI

) > αE[v(Qn
CI

)] − βnb+ γ

= α
∑

jµnjv(c(Ynj)) − βnb+ γ

= α
∑

jµnjV (Ynj) − βnb+ γ

> α
∑

jµnj[αE[v(Ynj)] − βnb+ γ] − βnb+ γ

= α2E[v((Qn)
R
)] − (α + 1)βnb+ (α + 1)γ

= α2E[v(Qn
R

)] − (α + 1)βnb+ (α + 1)γ

Here too, the last two equality signs hold since the expected utility model
satisfies RCLA and by Claim 5. Since V (Qn

CI
) = v(c(Qn

CI
)), we get

v(c(Qn
CI

)) > α2v(cv(Q
n
R

)) − (α + 1)βnb+ (α + 1)γ (10)

Next we show that lim
n→∞





β > 0 such that V (Y ) > αE[v(Y )] − βv(ȳ



Proof of Claim 2: Since w > 0, the requirement w′

w
6



Proof of Claim 3: To see that E[v(Y )] > V (Y ), note that similarly to
the proof of claim 2, in the DA model the utilities of all the outcomes that
are strictly preferred to Y are multiplied by 1

1+bFY (c(Y ))
6 1, while all other

utilities are multiplied by 1+b
1+bFY (c(Y ))

> 1 (note that
∫

γ(t, b, c(Y ))dFY (t) =

1). To show that there exist α > 1 and β > 0 such that V (Y ) > αE[v(Y )]−
βv(ȳ), observe that γ(t, b, c(Y )) 6 1 + b and proceed as in the RDU model
with α = 1 + b and β = b. �

Proof of Claim 4: We consider wlg finite lotteries of the form Y =
(y1,

1
n
; . . . ; yn,

1
n
) where y1 6 . . . 6 yn and start with the inequality V (Y ) 6

E[v(Y )]. Since v(y) = ψ(y, y), we get

V (Y ) =
1

n2

(

∑

i

ψ(yi, yi) +
∑

i

∑

j>i

[ψ(yi, yj)) + ψ(yj, yi)]

)

6
1

n2

(

∑

i

v(yi) +
∑

i

∑

j>i

[v(yi) + v(yj)]

)

=
1

n2

(

∑

i

v(yi) + (n− 1)
∑

i

v(yi)

)

= E[v(Y )]

where the inequality follows by the condition ψ(x, x) + ψ(y, y) > ψ(



> 2E[v(Y )] −
1

n2

n
∑

j=1

(2j − 1)v(ȳ)

= 2E[v(Y )] − v(ȳ)

The first inequality follows by the fact that for i > j, yi > yj and by the
monotonicity of ψ



It thus follows that w is more risk averse than all u ∈ W , hence for all such
u, cw(Y n

j ) 6 cu(Y n
j ) and similarly to the argument above,

cw(Qn
CI

) = cw (cw(Yn1), µn1; . . . ; cw(YnH), µnH)

6 cw (cu(Yn1), µn1; . . . ; cu(YnH), µnH)

6 cu (cu(Yn1), µn1; . . . ; cu(YnH), µnH) = cu(Qn
CI

)

It thus follows that cw(Qn
CI

) 6 min
u∈W

{

cu(Qn
CI

)
}

= V (Qn
CI

) = c(Qn
CI

) (recall

that V (δz) = z). Let c satisfy ϕ
W

(c) = E[ϕ
W

(Q
R
)]. By [26, Lemma 6],

lim
n→∞

cw(Qn

R
)

n
= c and hence, since cw(Qn

R
) = cw(Qn

CI
) 6 c(Q(
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