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Abstract

We consider nonparametric identiÖcation and estimation of pricing kernels, or equivalently of

marginal utility functions up to scale, in consumption based asset pricing Euler equations. Ours

is the Örst paper to prove nonparametric identiÖcation of Euler equations under low level condi-

tions (without imposing functional restrictions or just assuming completeness). We also propose

a novel nonparametric estimator based on our identiÖcation analysis, which combines standard

kernel estimation with the computation of a matrix eigenvector problem. Our estimator avoids

the ill-posed inverse issues associated with nonparametric instrumental variables estimators. We

derive limiting distributions for our estimator and for relevant associated functionals. A Monte

Carlo shows a satisfactory Önite sample performance for our estimators.
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1 Introduction

The optimal intertemporal decision rule of an economic agent can often be characterized by Örst-

order condition Euler equations. These equations are fundamental objects that appear in numerous

branches of economics, in particular in the literatures on consumption, on savings and asset pricing,

on labor supply, and on investment. Many empirical studies of dynamic optimization behaviors rely

on the estimation of Euler equations. One of the original motivations of the generalized method

of moments (GMM) estimator proposed by Hansen and Singleton (1982) was estimation of rational

expectations based Euler equations associated with consumption based asset pricing models. In this



set for the discount factor, and an identiÖed set for marginal utilities that is the union of Önite

dimensional spaces. This implies that the discount factor is also locally identiÖed (in the sense of

Fisher (1966), Rothenberg (1971) and Sargan (1983)), meaning that b is nonparametrically identiÖed

within a parameter space that equals a neighborhood of the true value. We then show that if the

class of utility functions is restricted to be monotone, which is a natural economic restriction, then

the Euler equation model is, nonparametrically, globally point identiÖed.

Having established identiÖcation, we next propose a novel nonparametric kernel estimator for

the marginal utility function and discount factor based on our identiÖcation arguments. We provide

asymptotic distribution theory for the discount factor, the marginal utility function, and for semi-

parametric functionals of the marginal utility function such as the Average Relative Risk Aversion

(ARRA) parameter deÖned below.

In the empirical asset pricing literature, the Euler equation (1) is traditionally written as

E [Mt+1Rt+1 j Ct; Vt] � E

�
b
g(Ct+1; Vt+1)

g(Ct; Vt)
Rt+1 j Ct; Vt

�
= 1;

where Mt+1 = bg(Ct+1; Vt+1)=g(Ct; Vt) is the time t+ 1 pricing kernel or Stochastic Discount Factor



equation (2), thereby estimating g instead ofM .3 The advantage is that equation (1) takes the form of

a Fredholm linear equation of the second kind (or Type II equation). As a result, unlike equation (2),

the solution of equation (1) has a well-posed generalized inverse, leading to much better asymptotic

properties for inference. In particular, in solving equation (1), a candidate discount factor b and

associated marginal utility function g is characterized as an eigenvalue-eigenfunction pair of a certain

conditional mean operator. Under the mild assumption that this operator is compact, a classical

result (see e.g. Kress (1999)) ensures that the number of eigenvalues is countable. The behavioral

restriction that b < 1 reduces this set to a Önite number, leading to our Önite set identiÖcation result

and hence to local identiÖcation for the discount factor. To obtain global point identiÖcation of

b and g



We establish asymptotic normality of a nonparametric estimator of the



g(Ct; Vt) = C�
t h (Vt) ; where � is a constant that determines risk aversion and



prior knowledge. They Örst use completeness conditions to identify the parametric RRA and then

use Perron-Frobenius to identify the role of habits. In contrast, we do not require a constant RRA

or require completeness conditions for identiÖcation. Thus, the setting and identiÖcation approaches

of this paper and those of Chen et al. (2014) are quite di¤erent.

An alternative to our kernel based estimation would be the use of sieves. Although we focus on

kernel estimates, our asymptotic theory is developed in a way that can be easily adapted to other

nonparametric estimation methods, including sieves (e.g. splines) and local polynomial methods.

Nonparametric sieve estimation of eigenvalue-eigenvector problems for self-adjoint operators is ex-

tensively discussed in Chen, Hansen and Sheinkman (2000, 2009), Darolles, Florens and Gouriéroux

(2004) and Carrasco, Florens and Renault (2007), among others.4 However, their results cannot

be applied to our model, since in our case the associated operator is not self-adjoint. Christensen

(2017) proposes a nonparametric sieve estimator for the discrete-time Markov setting of Hansen and

Scheinkman (2009), establishing asymptotic normality of the eigenvalue estimate and smooth func-

tionals of it. See also Gobet, Ho¤mann and Reiss (2004) for sieve estimation of eigenelements in

di¤usion models. As noted earlier, sieve estimation has more directly been applied to nonparametric

and semiparametric versions of equation (2) going back to Gallant and Tauchen (1989). In com-

parison, our kernel based estimator has several advantages as summarized in the previous section,

mainly attributable to our method of exploiting the well-posedness of equation (1). In particular,

with our methods we obtain novel asymptotic distribution theory for functionals of the nonparamet-

ric utility, such as the ARRA functional. This asymptotic theory is of independent interest and has

wide applicability in other situations where type-II equations arise.

3 IdentiÖcation

Since our goal is the study of Euler equations, we shall take as primitives the pair (g; b) 2 � �
G � (0; 1), where G denotes the parameter space of marginal utility functions, which satisÖes some

conditions below. From equation (1) it is clear that, for a given b, the Euler equation cannot

distinguish between g and h if there exists some constant k0 2 R such that g = k0h a.s., so a scale

and a sign normalization must be made: For the moment we shall assume there is just one asset, and

we denote its rate of return by Rt. We later discuss how information from multiple assets can be

used to aid identiÖcation. As seen in the previous section, for each period t, Ct is consumption and

Vt is (possibly a vector of) other economic variable(s).
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Definition. Let S; S 0 � R` denote the supports of (Ct; Vt) and (Ct+1; Vt+1) respectively. Let �

be a probability measure, with support S� � S \ S 0, and let L2 denote the Hilbert space L2(S�; �) of

(equivalence classes of) square �-integrable functions equipped with the inner product hg; fi =
R
gfd�

and the corresponding norm kgk2 = hg; gi (we drop the domain of integration for simplicity of

exposition).

LetM� L2 be a linear subspace; and deÖne the linear operator A : (M; k�k)! (M; k�k) by

Ag(c; v) = E[g(Ct+1; Vt+1)Rt+1 j Ct = c; Vt = v]: (3)

We assume that Ag is well-deÖned and Ag 2M03)



Ag



Theorem 1 shows that without further assumptions the Euler equation is partially identiÖed, with

b identiÖed up to a Önite set corresponding to eigenvalues larger than one, and g is identiÖed up to

a corresponding set of eigenfunctions. The discount factor b is also locally identiÖed, meaning that

for any b 2 B0 there is an open neighborhood of b that does not contain any other element in B0.

Essentially, compactness of A ensures that B0 is at most countable, and the economic restriction

that discount factors lie in (0; 1) ensures that B0 is Önite.

The identiÖed set without additional economic restrictions can be further reduced if there are

multiple assets. If there are J assets, then there are J Euler equations. Applying Theorem 1

to each asset, gives an identiÖed set for each, and the true (g; b) must lie in the intersection of

these identiÖed sets. One might further shrink the identiÖed set by imposing the restriction that

bg(Ct+1; Vt+1)Rt+1 � g(Ct; Vt) is uncorrelated with all variables in the information set at time t, not

just measurable functions of (Ct; Vt).

Assumptions S and C do not su¢ ce for point identiÖcation in general. We consider now a

shape restriction on marginal utilities, which is a common behavioral assumption ent�+1



We could consider other su¢ cient conditions that replace conditions on A by conditions on a

power of A; i.e. we could require that Assumptions C and I hold for An; for some n � 1). It is

hard to interpret these conditions, however, in a possibly non-Markovian environment, so we do not

pursue them here. It is also likely that the Euler Equation is overidentiÖed under the conditions

of Theorem 2, since as noted earlier we could exploit additional information coming from multiple

assets, or from uncorrelatedness with other data in the information set at time t.

For illustration, we consider the following examples of � andM; which lead to simple conditions

for identiÖcation by Theorem 2. Assume for simplicity that Vt+1 and Vt are empty, and denote by

f(c0; c); f 0(c0) and f(c) the joint and marginal densities of (Ct+1; Ct); respectively. Assume � has

Lebesgue density f� on a common support S� = S = S 0 (e.g. S� = [0;1)): Then, taking M equals

to L2; the operator equation bAg = g can be written as

b

Z
k(c0; c)g(c0)f�(c0)dc0 = g(c);

where k(c



for inference. For example, in the next sections we obtain rates of convergence for estimation of g

that are the same as those of ordinary nonparametric regression.

4 Estimation from Individual level-data



�i(c; v); i = 1; : : : ; n): Therefore, similar to our discussion of identiÖcation in Section 3, the number of

eigenvalues and eigenfunctions of bA is Önite and bounded by n, and they can be computed by solving

a linear system. Indeed, any eigenfunction bg(c; v) of bA necessarily has the form n�1
Pn

i=1
b�i�i(c; v);

for some coe¢ cients b�i; i = 1; : : : ; n; satisfying for its corresponding eigenvalue b� the equation

1

n2

nX
i=1

nX
j=1

b�j�j(C 0i; V 0i )R0i�i(c; v) = b� 1

n

nX
i=1

b�i�i(c; v):

A solution to this eigenvalue problem exists if, for all i = 1; : : : ; n;

1

n

nX
j=1

b�j�j(C 0i; V 0i )R0i = b�b�i;
which in matrix notation can be simply written as

bAnb� = b�b�;
where bAn is an n� n matrix with ij-th element aij = �j(C

0
i; V

0
i )R

0
i=n; and b� = (b�1; : : : ;

b�n)| (hence-

forth, v| denotes the transpose of v): Thus, let b� denote the largest eigenvalue in modulus of bAn andb� = (b�1; : : : ;
b�n)| its corresponding eigenvector. Our estimators for b0 and g0 are, respectively,

b̂ = 1=b� and bg (c; v) = n�1

nX
i=1

b�i�i(c; v): (7)

Marginal utilities are identiÖed up to scale and we consider the normalization kbgk = 1; which is

implemented by setting b�|b
b� = 1; where b
 is the n� n matrix with entries

!ij =
1

n2

Z
�i(c; v)�j(c; v)f�(c; v)dcdv:

As a practical recommendation, we could also normalize bg (Ci; Vi) to have unit standard deviation.

Also, we impose the sign normalization hbg; 1i > 0: The estimator (bg; b̂) can be easily obtained with any

statistical package that computes eigenvalues and eigenvectors of matrices. There are also e¢ cient

algorithms for the computation of the so-called Perron-Frobenius root b�;



The easiest way to consider simultaneously di¤erent assets in our estimation strategy is to obtain

individual estimates of the marginal utility for each asset by the method above and then combine the

resulting estimators to reduce the variance; see e.g. Chen, Jacho-Chavez and Linton (2016). Next

section addresses this point.

4.1 Estimation with multiple assets

Suppose that we have J assets, and let b̂j



Örst order behavior of b̂; and thus its asymptotic distribution will follow from the results obtained in

the next section.

Similar asymptotic results to those develop above can be used to test for overidentifying restric-

tions. Take for simplicity the case J = 2; and assume our conditions for identiÖcation hold. We can

then test the restriction b1 = b2 (where bj2



Assumption E:

1. The estimator bg satisÖes kbgk = 1 and hbg; 1i > 0:

2. jj bA� AjjG0 !p 0.

Condition E.1 is just a convenient normalization for our setting: Assumption E.2 is a mild con-

sistency condition. Note that by our identiÖcation results G0 consists of the linear span of g0. More

generally, under Assumption C, G0 is Önite dimensional, which makes E.2 easy to check; see the Ap-

pendix for primitive conditions for kernel estimators. Our next result shows the strong L2-consistency

of our estimators:

Theorem 3. Let Assumptions S, C, I and E hold. Then, b̂!p b0 and kbg � g0k !p 0.

We remark that Theorem 3 also holds in the partially identiÖed case where Assumption I is dropped

and the L2-distance between bg and g0 is replaced by the gaps between the eigenspaces of bA and A

associated to the eigenvalues b̂�1 = �( bA) and b�1
0 = �(A)



3. Furthermore,
1p
n

nX
i=1

si"i
d! N (0;�s) ;

where �s � limn!1 var
�

1p
n

Pn
i=1 si"i

�
<1:

Theorem 4. Let Assumptions S, C, I, E and N hold. Then, as n!1;

p
n
�bb� b0

�
d! N

�
0; b4

0�s

�
:

The proof of Theorem 4 can be found in the Appendix. We can estimate the asymptotic variance

of bb by standard long run variance estimators based on fbsib"igni=1; see e.g. Newey and West (1987),

where b"i = bg (C 0i; V
0
i )R

0
i�bb�1bg (Ci; Vi) ; and bs is computed as our estimator bg; with the normalization

hbg; bsin = 1: An alternative to plug-in asymptotic methods is to use block bootstrap, see e.g. Radulovíc

(1996).

For the estimator based on J assets proposed in Section 4.1, note that

p
n
�

(ŵ�b )
| b̂(J) � b0

�
= (ŵ�b )

|pn
�
b̂(J) � b01

�
+
p
n (ŵ�b � w�b )

| b01:

Since the second term is exactly zero, by construction of the weights, we expect, by consistency of

the long run variance estimator and the proof of Theorem 4 above,

p
n
�

(ŵ�b )
| b̂(J) � b0

�
=
p
n
�

(w�b )
| b̂(J) � b0

�
+ oP (1)

d! N
�
0; b4

0 (w�b )
| �Jw

�
b

�
;

where �J is deÖned in (8).

Our next result establishes an asymptotic expansion for bg � g0: This expansion can be used to

obtain rates for bg � g0 and to establish asymptotic normality of (semiparametric) functionals ofbg. DeÖne the process �n (c; v) � n�1
Pn

i=1 "i�i(c; v); where recall that �i(c; v) = Khi (c; v) = bf (c; v) :

Note that a standard result in kernel estimation is that for all (c; v) in the interior of S; under suitable

conditions, p
nh`n�n(c; v)

d! N (0;�� (c; v)) ;

with �� (c; v) = f�1(c; v)�2 (c; v)�2; �2 =
R
K2(u)du and �2 (c; v) = E ["2

i jCi = c; Vi = v^]TJ/F15 11.9552 Tf 11.358 0 Td [([)]22 Tf 12.983 0 Td [(87 191
BT
/F71 11.9552 Tf 111(r)]TJ/F73 11.9552 Tf 294.55 0 TJ/F26 7.9701 Tf 8.69 4.937 Td [96]TJ 0.F15 11.9552 Tf 16.37 0 Td [()))]TJ/F71 11r)]TJ/F73r
 6.0353250.701 TTJ
ET
q
1 0 0 1 224.56320 d 0 Jud i26.9552 Tf 224.567 191.150





Under the assumptions for Theorem 6 below, bg is di¤erentiable and bounded away from zero with

probability tending to one, so n (bg) is well-deÖned for large n. DeÖne the class of functions

D =

�
(c; v)! �c@ log(g(c; v))

@c
: g 2 G

�
; (12)

and the functions

d(c; v) � @ (c� f(c; v))

@c

1

f(c; v)
and �(c; v) � d(c; v)

g0(c; v)
: (13)

Also, we need to introduce some notation to be used in the asymptotic normality of n (bg) : Assuming

� 2 L2; deÖne

�s = �� hg0; �i hg0; si�1 s: (14)

The function �s has a geometrical interpretation as the value of � projected parallel to s on a

subspace of functions orthogonal to g0. Let L� denote the adjoint operator of L; and let ��s denote

the minimum norm solution of �s = L�r in r; i.e. ��s = arg minfkrk : �s = L�rg; which is well deÖned

because �s 2 N?(L) = R(L�); see Luenberger (1997, Theorem 3, p. 157) for the latter equality.

Here N?(L) denotes the orthogonal complement of the null space of L, see Luenberger (1997, p. 52)

for a deÖnition.

We also introduce a class of smooth function C�(T ) for a generic closed and convex set T . For any

vector a of ` integers deÖne the di¤erential operator @ax � @jaj1=@xa11 : : : @xa`` ; where jaj1 �
P`

i=1 ai.

For any smooth function h : T � R` ! R and some � > 0, let � be the largest integer smaller or

equal than �, and

khk1;� � max
jaj1��

sup
x2T
j@axh(x)j+ max

jaj1=�
sup
x 6=x0

j@axh(x)� @axh(x0)j
jx� x0j���

.

Further, let C�M(T ) be the set of all continuous functions h : T � R` ! R with khk1;� � M (for an

integer �; the �-th derivative is assumed to be continuous). Since the constant M is irrelevant for

our results, we drop the dependence on M and denote C� � Rx



1. The class D deÖned in (12) is P -Donsker5.

2. The measure � is the probability measure of (C; V ) with a support S that can be written as S =

[lc; uc] � SV ; for some lc; uc with lc < uc: Furthermore, limc!lc cf(c; v) = 0 = limc!uc cf(c; v)

for all v 2 SV and P (minfg0; bgg > ")! 1 for some " > 0.

3. The function d in (13) satisÖes d 2 L2; f�ig in (15) satisÖes

1p
n

nX
i=1

�i
d! N (0;�) ;

where � � limn!1 var
�

1p
n

Pn
i=1 �i

�
<1 and ��s 2 Cr(S).

Assumption CE.1 is standard in the semiparametric literature, see, e.g. Chen, Linton and Van

Keilegom (2003). Assumption CE.2 is similar to other assumptions required in estimation of average

derivatives, see Powell, Stock and Stoker (1989). This assumption guarantees that n (bg) is well



where Qq denotes the interval between the q � 1 and q quartile of Ct+1, and Sj denotes the interval

between the j � 1 and j quartile of Ct for q; j = 1; 2; 3; 4. We refer to each of these local averages of

the RRA between di¤erent quartiles as a QRRA (quartile relative risk aversion).

We can use our results to construct tests of heterogeneity in risk aversion measures as follows. The

sample analogs of the QRRA parameters � (q; j) can be shown to be asymptotically normal under

the same conditions above used for the ARRA: That is, with the simpliÖed notation � (q) � � (q; q)

for the parameter and �n (q) � �n (q; q) for the plug-in estimator, it can be shown

p
n (�n (q)� � (q))

d! N
�
0; �2(q)

�
;

for a suitable asymptotic variance �2(q); q = 1; 2; 3 and 4. Moreover, by deÖnition,
p
n (�n (q)� � (q))

and
p
n (�n (j)� � (j)) are asymptotically independent for q 6= j: This suggests a simple strategy for

testing heterogeneity in risk aversion by means of simple pairwise t-tests for the hypotheses, for q 6= j;

H0qj : � (q) = � (j) vs H1qj : � (q) 6= � (j) :

The t-statistics are constructed as

tqj =

p
n (�n (q)� �n (j))p
�2
n(q) + �2

n(j)
;

for suitable consistent estimates �2
n(q) of the asymptotic variances �2(q); for q = 1; 2; 3 and 4: We

then reject H0qj when tqj is large in absolute value, using that tqj converges to a standard normal

under H0qj:

We also construct some tests for the absence of habits, i.e.

@g0(Ct+1; Ct)

@Ct
= 0:

Our tests are based on the functional

� (g) = E

�
@g(Ct+1; Ct)

@Ct
�(Ct+1; Ct)

�
;

for various positive functions �(�). When there is no habit e¤ect � (g0) = 0 for any choice of � . As

with  (g0), for each choice of function � we estimate � (g0) by plugging in bg for g0 and replacing the



ARRA. The model is then given by the Euler equation

b0E
h
C
��0
t+1 Rt+1jCt

i
= C

��0
t :

We set b0 = 0:95 and �0 = 0:5. We draw a random sample of (Ct; Ct+1) from the distribution

(logCt; logCt+1) � N

 
0;

 
0:25 0:1

0:1 0:25

!!
;

and construct Rt+1 = b�1
0 (1 + �t) (Ct+1=Ct)

�0 , where �t is distributed uniformly on [�0:5; 0:5] and

drawn independently of (Ct; Ct+1). This design was chosen to generate data that satisÖes the Euler

equation model, has realistic parameter values and consumption distribution, and avoids the ap-



function g is then recovered using the relation g (c; v) = g�(c; v)=c. Throughout we set the bandwidth

to be 1:06�n�1=3:5, where � is the sample standard deviation of Ct. This is essentially Silvermanís

rule applied to the rate n�1=3:5. All of our estimators for g0 are normalized to have a unit standard

deviation.

For each Önite-dimensional parameter and summary measure we consider, we report the mean,

standard deviation, 2:5th percentile, 97:5th percentile, 95% coverage probability based on normal

distribution, their bootstrap counterparts and the root mean square error.6 Table 1 reports estimates

of the discount factor from our three estimators, CRRA, NP � 1, and NP � 2. Table 2 reports

estimates of the



estimates of the marginal utility function tend to be less accurate at higher consumption levels. This

can also be seen for NP�1 in Figure 1, where the standard error bands widen at higher consumption

levels.

In Table 4 we report estimates of � (g0) that can be used to test for the presence of habits in

g0. In our experiments estimates of � (g0) do not di¤er signiÖcantly from zero as expected, since our

speciÖcation of g0 does not have any habit e¤ect. Generally, all of our parameter estimates and test

statistics appear to have distributions across simulations that are reasonably well approximated by

the bootstrap, e.g., biases are relatively small, bootstrap standard errors are generally close to the

standard deviations across simulations, and bootstrap conÖdence intervals are generally close to the

true. Both coverage probabilities based on the normal approximation and the bootstrap generally

are relatively close to the nominal.

24



b0 Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 CRRA 0.000 0.012 0.926 0.975 0.946 0.012 0.926 0.974 0.940 0.012

NP � 1 0.006 0.027 0.917 0.971 0.984 0.018 0.915 0.980 0.929 0.028

NP � 2 0.009 0.041 0.808 0.983 0.963 0.031 0.895 1.012 0.932 0.042

n = 2000 CRRA 0.000 0.006 0.938 0.961 0.960 0.006 0.938 0.962 0.950 0.006

NP � 1 0.004 0.020 0.936 0.960 0.992 0.009 0.932 0.965 0.924 0.020

NP � 2 0.005 0.028 0.862 0.965 0.974 0.021 0.922 0.994 0.946 0.028
Table 1: Summary statistics of Monte Carlo estimates of the discount factor b0. The true is

b0 = 0:95. CRRA, NP � 1 and NP � 2 refer respectively to the parametric, one-dimensional



QRRA Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 � (1; 1) -0.158 0.205 0.273 1.068 0.910 0.242 0.115 1.068 0.878 0.259

� (1; 2) -0.068 0.366 -0.049 1.167 0.969 0.358 -0.137 1.287 0.969 0.372

� (2; 1) -0.149 0.222 0.242 1.060 0.932 0.246 0.145 1.118 0.904 0.267

� (2; 2) -0.055 0.327 0.000 1.151 0.961 0.355 -0.137 1.274 0.965 0.331

� (2; 3) -0.010 0.450 -0.240 1.187 0.973 0.480 -0.433 1.477 0.973 0.450

� (3; 2) -0.053 0.326 -0.014 1.081 0.969 0.351 -0.121 1.275 0.966 0.330

� (3; 3) 0.009 0.457 -0.279 1.180 0.972 0.460 -0.408 1.428 0.966 0.457

� (3; 4) -0.102 0.785 -0.850 1.972 0.963 0.933 -1.320 2.452 0.972 0.792

� (4; 3) -0.029 0.400 -0.137 1.181 0.969 0.470 -0.345 1.515 0.978 0.401

� (4; 4) -0.281 0.980 -0.957 2.378 0.954 1.079 -1.486 2.876 0.955 1.019

n = 2000 � (1; 1) -0.104 0.179 0.350 0.825 0.978 0.158 0.280 0.889 0.888 0.206

� (1; 2) -0.023 0.272 0.125 0.903 0.984 0.249 0.048 1.027 0.954 0.273

� (2; 1) -0.087 0.146 0.330 0.859 0.938 0.171 0.245 0.910 0.912 0.170

� (2; 2) -0.018 0.214 0.151 0.882 0.964 0.251 0.031 1.030 0.968 0.214

� (2; 3) -0.007 0.319 0.004 1.019 0.988 0.314 -0.104 1.133 0.956 0.319

� (3; 2) -0.009 0.274 0.078 0.871 0.980 0.254 0.024 1.013 0.954 0.274

� (3; 3) -0.016 0.376 0.095 0.956 0.986 0.310 -0.067 1.153 0.962 0.377

� (3; 4) -0.078 0.388 -0.136 1.322 0.952 0.573 -0.583 1.722 0.970 0.396

� (4; 3) -0.002 0.385 0.129 0.913 0.980 0.302 -0.054 1.123 0.964 0.385

� (4; 4) -0.244 0.476 0.053 1.641 0.940 0.624 -0.571 1.948 0.958 0.535



� (Ct+1; Ct) Bias Std Lpc Upc Cov B-Std B-Lpc B-Upc B-Cov Rmse

n = 500 Ct+1 -0.002 0.111 -0.111 0.132 0.975 0.118 -0.255 0.200 0.975 0.111

Ct



Figure 1: Estimates of the marginal utility function g0 using simulated data with n = 500. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% conÖdence

interval, and the true.

Figure 2: Estimates of the marginal utility function g0 using simulated data with n = 2000. Est, CI,

and True represent respectively the one-dimensional nonparametric estimator, its 95% conÖdence

interval, and the true.
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9 Appendix

9.1 Euler Equation Derivation

To encompass a large class of existing Euler equation and asset pricing models, consider utility

functions that in addition to ordinary consumption, may include both durables and habit e¤ects.

Let U be a time homogeneous period utility function, b is the one period subjective discount factor,

Ct is expenditures on consumption, Dt is a stock of durables, and Zt is a vector of other variables

that a¤ect utility and are known at time t. Let Vt denote the vector of all variables other than Ct

that a¤ect utility in time t. In particular, Vt contains Zt, Vt contains Dt if durables matter, and Vt

contains lagged consumption Ct�1, Ct�2 and so on if habits matter.

The consumerís time separable utility function is

max
fCt;Dtg1t=1

E

" 1X
t=0

btU(Ct; Vt)

#
:

The consumer saves by owning durables and by owning quantities of risky assets Ajt, j = 1; : : : ; J .

Letting Ct be the numeraire, let Pt be the price of durables Dt at time t and let Rjt be the gross

return in time period t of owning one unit of asset j in period t � 1. Assume the depreciation rate

of durables is �. Then without frictions the consumerís budget constraint can be written as, for each

period t,

Ct + (Dt � �Dt�1)Pt +
JX
j=1

Ajt �
JX
j=1

Ajt�1Rjt

We may interpret this model either as a representative consumer model, or a model of individual

agents which may vary by their initial endowments of durables and assets and by fZtg1t=0. The

Lagrangean is

E

"
TX
t=0

btU(Ct; Vt)�
 
Ct + (Dt � �Dt�1)Pt



account the fact that, due to habits, changing Ct will directly change Vt+1, Vt+2 etc. Otherwise, if

the consumer ignores this e¤ect when maximizing, then habits called external.

If habits are external or if there are no habit e¤ects at all, then deÖne the marginal utility function

g by

g(Ct; Vt) =
@U(Ct; Vt)

@Ct
If habits exist and are internal then deÖne the function eg by

eg(It) =

LX
`=0

b`E

�
@U(Ct+`; Vt+`)

@Ct
j It
�

.

where L is such that Vt contains Ct�1; Ct�2; : : : ; Ct�L, and It is all information known or determined

by the consumer at time t (including Ct and Vt). For external habits, we can write eg(It) = g(Ct; Vt),

while for internal habits deÖne

g(Ct; Vt) = E [eg(It) j Ct; Vt] .

With this notation, regardless of whether habits are internal or external, we may write the Örst order

conditions associated with the Lagrangean (17) as

�t = bteg(It)

�t = E [�t+1Rjt+1 j It] j = 1; : : : ; J

�tPt = btgd(Ct; Vt)� �E [�t+1Pt+1 j It]

Using the consumption equation �t = bteg(It) to remove the Lagrangeans in the assets and durables

Örst order conditions gives

bteg(It) = E
�
bt+1eg(It+1)Rjt+1 j It

�
j = 1; : : : ; J

bteg(It)Pt = btgd(Ct; Vt)� �E
�
bt+1eg(It





3.



If, in addition, A2 holds, then

sup
ln�h�un

sup
 2	
jbmh( )�m( )j = OP

 s
1

nl`n
+ urn

!
. (20)

Proof. By the Triangle inequality

jbmh( )�m( )j

�
����� bmh( )� E[bTh( )]

E[ bf (c; v)]

�����+

����� E[bTh( )]

E[ bf (c; v)]
�m( )

�����
� 1��� bf (c; v)

���
��� bTh( )� E[bTh( )]

���+

���E[bTh( )]
������ bf (c; v)E[ bf (c; v)]

���
��� bf (c; v)� E[ bf (c; v)]

���
+

1���E[ bf (c; v)]
���
���E[bTh( )]� T ( )

���+
jT ( )j���E[ bf (c; v)]f (c; v)

���
���E[ bf (c; v)]� f (c; v)

��� ;
where T ( ) � m( )f (c; v). We obtain uniform rates for bTh( ) � E[bTh( )]; the rates for bf (c; v) �
E[ bf (c; v)] follow analogously and are simpler to obtain.

DeÖne the class of functions

K0 :=

(
(Ci; Vi)]�0C



and where ��1 is the inverse cadlag of the decreasing function u ! �buc (buc being the integer

part of u, and �t being the mixing coe¢ cient) and Qf is the inverse cadlag of the tail function

u! P (jf j > u) (see Doukhan, Massart and Rio (1995)). Note that by Assumption A1 and Pollard

(1984, p. 36)

P (jf j > z) � E[jf j2]

z2

� Ch`

z2
:



Definition 4. Let L2(r) be the class of functions ' 2 L2 such that �' �
P1

j=�1E
�
'i"i'i�j"i�j

�
<

1 and ' is r�times continuously di¤erentiable.

Lemma B3. Suppose that Assumptions A0, A1 and A2 hold. Then, for any ' 2 L2(r); it holds

that
p
n
D� bA� A� g0; '

E
=

1p
n

nX
i=1

'i"i + oP (1);

and then

p
n
D� bA� A� g0; '

E
d! N (0;�') :

Proof. DeÖne bTg0 (c; v) =
1

n

nX
i=1

g00iR
0
iKhi (c; v) ;

with g00i � g0 (C 0i; V
0
i ) and note that bAg0 (c; v) = bTg0 (c; v) = bf (c; v). Using standard arguments, we

write � bA� A� g0 (c; v) = an (c; v) + rn(c; v),

where

an (c; v) = f�1 (c; v)
�bTg0 (c; v)� Tg0 (c; v)� Ag0 (c; v)

� bf (c; v)� f (c; v)
��

;

T g0 (c; v) � f (c; v)Ag0 (c; v) ; bTg0 (c; v) � bf (c; v) bAg0 (c; v) and

rn(c; v) � �
bf (c; v)� f (c; v)bf (c; v)

an(c; v):

Lemma B1 and our conditions on the bandwidth imply krnk = oP (n�1=2). It then follows thatD� bA� A� g0; '
E

has the following expansionZ
'(c; v)[bTg0(c; v)� Tg0(c; v)]dcdv (21)

�
Z
'(c; v)Ag0 (c; v) [ bf(c; v)� f(c; v)]dcdv (22)

+ oP (n�1=2).

We now look at terms (21)-(22). Firstly, it follows from standard arguments and A2.5 that the

di¤erence between Tg0(c; v) and E[bTg0(c; v)] is OP (urn) = oP (n�1=2) by the condition nu2r
n ! 0:

36



Hence,Z
'(c; v)[bTg0(c; v)� Tg0(c; v)]dcdv =

Z
'(c; v)[bTg0(c; v)� E(bTg0(c; v))]dcdv + oP (n�1=2)

=
1

n

nX
i=1

g00iR
0
i

Z
'(c; v)Khi (c; v) dcdv �

Z
'(c; v)E(g00R

0
iKhi (c; v))dcdv + oP (n�1=2),



9.3 Main Proofs

The spectral radius � (A) of a linear continuous operator A on a Banach space X is deÖned as

sup�2�(A) j�j, where � (A) � C denotes the spectrum of A. Any compact operator A has a discrete

spectrum, so that � (A) is simply the set of eigenvalues of A. For more deÖnitions and further details

see Kress (1999, Chapter 3.2). The operator B is called positive if Bg 2 P when g 2 P.

Proof of Theorem 1. By Assumption C the set of countable eigenvalues of A has zero as a limit

point, and thus, the set of eigenvalues � with ��1 2 (0; 1) is a Önite set. By Theorem 3.1 in Kress

(1999) for each such eigenvalue there is a Önite-dimensional eigenvector space. �

Proof of Theorem 2. Let A� denote the adjoint of A; which is also compact and positive by

well known results in functional analysis. Assumption S implies that �(A) > 0: Also notice that

the eigenvalues of A� are complex conjugates of those of A (in particular, �(A) = �(A�)): Then, by

the Kre¼¬n-Rutmanís theorem (see Theorem 7.C in Zeidler (1986, vol. 1, p. 290)) there is exactly

one solution to bAg = g with g > 0 and kgk = 1 and a solution to bA�s = s with s > 0. Note

hg; si = b hAg; si = b hg; A�si = b�(A) hg; si. Hence, since g and s are strictly positive, hg; si 6= 0;

and then b = ��1(A). �

Proof of Theorem 3. By Theorems 1 and 2 in Osborn (1975), there is a constant M such that���bb�1 � b�1
0

��� �M jj bA� AjjG0 (23)

and

kbg � egk �M jj bA� AjjG0 ; (24)

where eg = hbg; g0i g0 is the projection of bg on g0. Thus, by 0 < b0;bb < 1; a.s,���bb� b0

��� �M
���bb� b0

��� jj bA� AjjG0
�M jj bA� AjjG0 ;

and by Assumption E.2 jbb� b0j = oP (1).

To conclude that kbg � g0k = oP (1) we need to show that keg � g0k = oP (1). First, we show that

hbg; g0i is non-negative for su¢ ciently large n: To see this, note

hbg; 1i = heg; 1i+ oP (1)

= hbg; g0i hg0; 1i+ oP (1)

� 0;

38



so hbg; g0i � 0 for large enough n:

Next,

1 = kbgk (by normalization)

= kegk+ oP (1) (by kbg � egk �M jj bA� AjjG0)
= jhbg; g0ij+ oP (1); (by deÖnition of eg)

which then implies keg � g0k = jhbg; g0i � 1j = oP (1): Hence, by the triangle inequality, kbg � g0k =

oP (1): �

Proof of Theorem 4. By deÖnition

bb bAbg � b0Ag0 = bg � g0:

Write the left hand side of the last display as�bb� b0

�
Abg + b0

� bA� A� g0 + b0A(bg � g0) + bR;
where bR =

�bb� b0

�� bA� A0

�bg+ b0

� bA� A� (bg� g0): Then, after noticing that (by deÖnition of s),

hb0A(bg � g0); si = hbg � g0; si ;

we obtain �bb� b0

�
b�1

0 hbg; si+ b0

D� bA� A� g0; s
E

+
D bR; sE = 0:

By the proof of Theorem 3, it is straightforward to show that, for a C > 0; bR � C
n
jj bA� Ajj2G0 + jj bA� AjjG�fg0g kbg � g0k

o
and

kbg � g0k � kbg � egk+ keg � g0k

�M jj bA� AjjG0 + jkegk � 1j (by hbg; g0i � 0)

� 2M jj bA� AjjG0 ; (by jkegk � 1j � keg � bgk )

which implies by Assumption N.1  bR = oP (n�1=2):

Then, Cauchy-Schwarz inequality yields���D bR; sE��� �  bR ksk
= oP (n�1=2):
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Then, by continuity of the inner product, hbg; si !p hg0; si � 1; and by Slutzky Theorem

p
n
�bb� b0

�
= �
p
nb2

0

D� bA� A� g0; s
E

+ oP (1):

Hence, the result follows from Assumptions N.2 and N3. �

Proof of Theorem 5. DeÖne the operators L = b0A� I; and its estimator bL = bb bA� I: Then, by

deÖnition

0 = bLbg � Lg0

= L(bg � g0) + (bL� L)g0 + (bL� L)(bg � g0): (25)

First, from previous results it is straightforward to show as in Theorem 4(bL� L)(bg � g0)
 = oP (n�1=2)

and (bL� L)g0 � b0( bA� A)g0

 = OP

�
n�1=2

�
:

Hence, in L2;

L(bg � g0) = �b0( bA� A)g0 +Rn;

where Rn satisÖes the conditions of the Theorem. �

Proof of Theorem 6. Set b�(Ci; Vi) = �Ci@bg(Ci; Vi)=@c=bg(Ci; Vi); which estimates consistently

�(Ci; Vi) = �Ci (@g0(Ci; Vi)=@c) =g0(Ci; Vi): Then, using standard empirical processes notation, write

p
n (n (bg)�  (g0)) =

p
n
�
Pnb� � Pb��+

p
n
�
Pb� � P�� :

By the P -Donsker property of D; P (bg 2 G)! 1 and the consistency of bg;
p
n
�
Pnb� � Pb�� =

p
n (Pn� � P�) + oP (1):

Since bg � g0 is bounded with probability tending to one, we can apply integration by parts and use

Assumption CE to write

p
n
�
Pb� � P�� =

p
n hlog(bg)� log(g0); di+ oP (1)

=
p
n hbg � g0; �i+ oP (1);

where the last equality follows from the Mean Value Theorem and the lower bounds on g and bg.
Note that � 2 N?(L), since hg0; �i = E[d(C; V )] = 0: Then, by Lemma B4

p
n
�
Pb� � P�� =

�b0p
n

nX
i=1

��s(Ci; Vi)"i + oP (1);
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and therefore

p
n (n (bg)�  (g0)) =

1p
n

nX
i=1

(�(Ci; Vi)� P�)� b0�
�
s(Ci; Vi)"i + oP (1):

The result then follows from Assumption CE.3. �
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