Exercise 2. Let R be an integral domain that is integrally closed in its eld of fraction F.

- (1) Show that an algebraic is integral over R if and only if its minimal polynomial over F is a monic polynomial in R[x].
- (2) Show that for any monic $f(x) \supseteq R[x]$, for any decomposition $f(x) = f_1(x)f_2(x)$ into monic polynomials in F[x], the factors f_1 ; f_2 have coecients in R.

Exercise 3. Let k be an algebraically closed eld. Consider the a ne variety $V = k^2$ (with coordinates x; y), and the a ne variety $W = k^2$ (with coordinates s; t). Suppose $': V \vdash W$ is a morphism, and denote by R = k[x; y] the image of the induced ring homomorphism $^{L}: k[s; t] \vdash k[x; y]$. For each of the following statements, give a proof or a counterexample.

- (1) If ' has Zariski dense image, then ' is surjective.
- (2) If k[x;y]=R is any integral extension J/F11, 4(in) 25[(k)] gs-333(then)] TJ/F11 9.9626 Tf 132.nl11k

Exercise 7. Suppose k be a eld and R = k[x; y; z] a polynomial ring. Compute $\operatorname{Ext}_R^i R = (xz); R = (xy; xz)$

for all i = 0.

Exercise 8. Suppose p is a prime of the form 4k + 3. Find the conjugacy class of every element of order 4 in $GL_2(\mathbb{F}_p)$.