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A dynamic programming algorithm is presented for calculating the partition 
function and the pairwise base-pairing probabilities over all secondary structures 
for a given RNA nucleotide sequence, and the calculation of the pairwise base-
pairing probabilities; the algorithm is an application of the approach used by 
McCaskill to accomplish this for nested secondary structures to the class of 
structures inclusive of pseudo-knots, using a technique due to Eddy et. al.  
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Expanding upon a computational screening approach used to identify likely 
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process. To prevent the UGA codon from being interpreted as a stop codon, as 

is normally the case, requires the presence of a selenocysteine insertion sequence 

(SECIS element) residing in the downstream untranslated portion of the mRNA. 

 
FIG 1: The conserved SECIS motif from Kryukov 

The initial filtering process uses a regular-expression based filter called PatScan, 

written by Ross Overbeek and similar in function to the tools used by Kryukov 

and Lescure in the initial phases of their screening techniques. It allows the 

following constraints to be enforced: 

 1. Specific sub-expressions may be of variable or fixed length 
2. A sub-expression may have a specific nucleotide sequence, or may be a                       

nucleotide drawn from a set of such 
3. A sub-expression may be constrained such that it must be possible to base-

pair, helically, with another sub-region given a set of base-pairing possibilities 
(Watson-Crick and potentially G-U) 

4. The constraints in (3) may be loosened by allowing specific gaps or 
mismatches in the helical regions 
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restriction imposed by the initial filter, were not measured for the purpose of 

ranking the hits that passed the screen.  
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FIG 2: Energetically contributing substructures, from Wuchty et al. 
 
In the recursion, the first case corresponds to the jth base bonding with the ith, 

the next two cases are dangles, and the last case accounts for when the jth base 

bonds with some base between i and j. 

 

Revising Nussinov Jacobson to account for the actual thermodynamic 

contributions of substructures requires several cases: 

Hairpin loops interior to a base-pair i,j; bulges, stacked base-pairs and interior 

loops which are determined by two base-pairs, as seen in figure 2; and multi-

loops which are enclosed by an outermost base pair and have several independent 
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McCaskill's algorithm has a distinct advantage over the minimum free energy 

structure prediction algorithms, in that it captures the entire ensemble of 
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Then the recurrences for the remainder are: 

 
Qm

ij= the sum over i<h<=j of ( e^(Penalty) + Qm
i,h-1)*Qm1

hj*e^(base) where 
Penalty is a function of the unpaired bases in the left hand portion of the 
multi-loop and base is the contribution of an additional base-pair inside a 
multi-loop.  

 
Qb

ij
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FIG 4: An elementary pseudoknot 

 

The maximization relies upon some untested thermodynamic parameters, due to 

the relative infrequency of the occurrence of psedoknots, which were chosen for 

their ability to reproduce experimentally determined results without unduly over-

predicting pseudoknotted structures. The parameters punish construction of 

pseudoknots within pseudoknots, and negative (stabilizing) secondary structure 

contributions within pseudoknots are lessened by a scaling factor. Eddy-Rivas 

also implements stabilizing energetic contributions for coaxial stacking, where if i 

and k base-pair, and l and j base-pair, and l=k+1, then there is a stabilizing energy 
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The recurrences for these matrices recurse on themselves and on the unholed 

matrices, which are preserved largely intact from the Zuker-Sankoff Algorithm. 

Notably, the recurrences contain bifurcating cases that allow for a holed matrix 

element to contain contributions from the sum of two other holed matrices. 

In figure 5 we see non-nested bifurcations that contribute to whx.  

 

  
FIG 5: Non-nested contributions to whx(i,j;k,l) 

 

These non-nested bifurcations allow arbitrary, unrestricted pseudoknots to be 

produced. In figure 6 we see how to construct a pseudoknot of the form  

(..[..{..)..]..} and thus can produce k-ary pseudoknots, requiring an 

arbitrary number of sets of parentheses is ultimately accounted for in producing 

the optimal secondary structure. 

 

!
FIG 6: Pseudoknot Construction 
 

In Eddy-Rivas, the final computation is truncated by combining only two hole 

matrices at the top level. As a result, inclusion of certain types of knots, such as 

those of a parallel beta-sheet, cannot be determined. !

!
!





 

16 

introducing subcases that were mutually exclusive and allowed for positive 
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matrices is a contribution from a structure containing a pseudoknot, which was 

not the case in Eddy-Rivas, which depended upon the weighting and penalizing 

of combinations of hole matrices to prevent their being chosen as optimal when 

there was an available nested structure in th
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vx(i,j) = EIS1(i,j) + the sum for i<g<h<j of  
                       EIS2(i,j;g,h)                        (1) 
                    + the sum for i<h<j of  
                       wm(i+1,h-1)*wm1(h,j-1)*P5            (2) 
                    + wx(i,a-1)*vhx(a,l;k,m) 
                      *whx(k+1,j;m+1,l-1)*3P10P*P11         (3) 
                  for all  i<a<=k< m-1 <m<=l <j-1 
Again, as matrices wm and wm1 are identical to their counterparts in McCaskill, 

the topmost recursions (1) and (2) are identical to the nested case while (3) 

attempts to uniquely account for the pseudoknot contributions.  

 

There are then three additional recurrences in the calculation of the partition: 

whx, vhx, and zhx. Of the three, zhx is the most constrained. It has been 

redefined 

 
zhx(i,j;k,l)= wx(i+1, k) * wx(l,j-1) +                      (1) 
              for i<h<=k and l<g<=j the sum of 
                 if (h,g can basepair): 
                     vx(i,j;h,g)*zhx(h,g;k,l)               (2) 
                     else: 0 
The first case handles structures interior to the base-pair, and the second recurses 

on vhx.  

 
vhx(i,j;k,l)=  
       if(i,j can't basepair or k,l can't basepair): 0      (1) 
                   else if(i=k and l=j): 1.0                (2) 
                   else if(i=k or l=j): 0                   (3) 
                   else 
                     wx(i+1,k-1)*wx(l+1,j-1) +              (4) 
                     EIS2(i,j;k,l) +                        (5) 
                     for i<g<k and l<h<j the sum of                             
                        (wx(i+1,g-1)*wx(h+1,j-1) + EIS2 
                                      (i,j;g,h) ) * vhx(g,h; k,l)        (6)                                 
                      
Equation (1) and (3) are base cases for vhx; they prevent the two base-pairs 

required to satisfy the constraint. Equation (2) is a base case that is necessary to 
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maintain the recursion on vhx in wx and vx. Equation (4) is the case where no 

additional pairs cross the hole, equation (5) is the contribution of vhx as a stack, 

bulge, or interior loop. Equation (6) recurses inwards on stacked vhx's internal to 

this one.  

  

Finally: 
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Additional test runs to answer these questions in particular must wait for a 
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their worst account for more of the energetic contributions to the bases in 

question than does the McCaskill implementation in Vienna RNA package.  

 

Further work includes finding an optimal solution to the problem of dangles 

based upon mutually exclusive sub-cases of various matrices that additionally will 

allow the incorporation of coaxial stacking contributions. Additionally, the 
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