
Bayesian and Neural Networks for
Motion Picture Recommendation

by Robert Russo

Boston College Honors Thesis
Advisor: Professor Sergio A. Alvarez

May 12, 2006

Abstract

This thesis applies machine learning techniques to a dataset of movies described
by collaborative (social) and content attributes in order to create a mixed recommender
system for movies. Bayesian networks, two versions of neural networks, decision trees,
and simple rule classifiers are compared. It is determined that Bayesian and neural
networks outperform the remaining techniques. Both techniques achieved remarkably
high top-10 precision, an important metric of recommendation quality. An attempt to
contrast recommendation quality for content-only and collaborative-only datasets as
compared with a dataset described by both content and collaborative attributes yields
inconclusive results. Insufficient content information in the current datasets may be the
reason for this.

Introduction

Definition: A recommender system is a system that takes data about a user’s past history
in a certain industry, such as products they have purchased, movies they have seen, or
websites they have visited, and predicts what the user may prefer to purchase or see in
the future.

Some recommender systems are collaborative systems, in which other users’ past
histories are used in trying to link the particular user to a group of users with similar
interests or purchases. This group will then influence what the recommender system will
output based on what the group likes or dislikes. Other systems are content-based
systems, in which details of the product, movie, website, or other item are compared
against those of similar items that the user has been in contact with. These similar items
are helped to gauge whether this user will like or dislike the item. Some recommender
systems use a mixture of collaborative and content-based approaches.

Recommender systems have become a popular subject starting in the late 1990’s
(Resnick & Varian, 1997). Many online retailers, such as Amazon.com, use
recommender systems in order to recommend new products to customers in order to try
to maximize profits. For example, suppose a customer buys a science-fiction book. The
next time the customer visits the site, it might recommend books by the same author, or
may suggest other science-fiction books that other customers have bought in addition to
the one the customer purchased the last time he or she visited. By having this type of
system in place, retailers are able to allow customers to more easily find products that
they may be interested in than their retail store counterparts.

There are some recommender systems which allow users to listen to different
types of music and set preferences based on the songs they listen to. These types of
recommender systems, such as Yahoo.com’s LAUNCHcast Radio, allow a user to get
instant updates in recommendations due to being able to rate songs as they are playing.
As such, users are able to listen to more songs that they could possibly like on a
personalized radio station.

Many websites also use recommender systems to personalize their interface with
users in order to maintain visits to their site. For example, at a news site, if a person
enters their zip code, the site may contain local news, weather, and sports that the user
may prefer to read over national or global content. By allowing this customization users
may better enjoy the site and more easily find articles that they are interested in.

My intention is to find a better algorithm which combines content-based data

Machine Learning Concepts

Machine learning is a rapidly growing field within computer science.

Definition: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E” (Mitchell, 1997).

Definition: A dataset is a group of data. It is basically an n-by-m matrix with n rows and
m columns. The rows are called instances. Instances are basically different occurrences
of a situation. The columns are called attributes. Attributes are certain details that were
recorded during every instance.

Figure 1 is what a generic dataset may look like.

Figure 1: Sample Dataset

Student Graduation Year Major GPA

Decision Trees

Another classifier which builds upon rule classifiers is one with decision trees.
Decision trees basically take a look at multiple attributes and break them into separate
pairings, predicting different values for the target attribute based on the pairing of other
variables. New branches are made for new pairings and as a result an entire tree is made,
which the classifier branching at each point depending on what the value of a particular
attribute is. Many algorithms have been made using decision trees, the most basic among
them being the ID3 algorithm (Quinlan, 1993). However, decision trees initially had a
problem in overfitting data, in that random occurrences would create new branches to
trees and would therefore lead to a more complex tree, one that could predict false
outcomes due to some instances whose target attribute value would be different than
other instances with similar values for its attributes. As a result, new algorithms were
made using pruning. Pruning would remove branches of the tree if it improved the
overall accuracy of the tree. Examples of decision tree algorithms include C4.5 (Quinlan,
1993) which built upon ID3 by adding pruning, as well as allowing numeric attribute
values.

Neural Networks

Artificial neural networks are another type of machine learning technique. It was
inspired by the neurons inside a human brain which connect to each other and generate
outputs based on stimuli from other neurons. In artificial neural networks, perceptrons
are used instead of neurons. A perceptron takes in many inputs and assigns some
constant called to each one, called a weight. The weight represents the importance of the
input to the perceptron. In the machine learning case the inputs are the different values of
the attributes of an instance. The perceptron then adds all of the inputs multiplied by
their weights. It then applies a threshold to this value. If it is above 0, the perceptron will
output a 1. If the value is not above 0, then the perceptron will output a -1. For example,
Figure 2 is a diagram of a perceptron.

Formula: Given inputs x1, x2, …, xn, a perceptron will assign weights w1, w2, …, wn to
each of them. It will then calculate x1w1 + x2w2 + … + xnwn) and then output a single
value based on whether or not that value is greater than 0.

Figure 2: Example of a Perceptron

Perceptrons can be hooked up with one another like neurons, in order to create
networks consisting of multiple layers of perceptrons. For example, such a network can
be used to compute the Boolean logic function XOR. Figure 3 is a diagram of how doing
x XOR y would work.

Figure 3: A Network of Perceptrons that Computes the XOR Boolean Function

In this case, A, B, and C are perceptrons. A would only output a 1 if x is 1 and y
is 0. B would only output a 1 if x is 0 and y is 1. C would only output a 1 if A or B is
outputting a 1. Therefore, this network of perceptrons models the XOR function. In
general, perceptrons are referred to as nodes, and perceptrons that only output values that
go into more perceptrons are called hidden nodes.

Network Training

The way a neural network learns is by training its weight values. Each time an
iteration of passing the inputs through the network is done, the output values are
compared against the target attribute’s values. Then a calculation is performed to create
the delta that must be added to the original weight. This continues until the weights do
not change, or until the amount of pre-determined iterations is reached. There are several
ways to update weights for perceptrons. One way is to assign random weights to each
input and then iterating the perceptron using the following rule for updating each weight
wi for input xi:

Formula: wiÅ wi + ¨Zi where ¨Zi� �Ș�W�– o)xi

In the above formula, Ș�LV�WKH�OHDUQLQJ�UDWH�XVHG�WR�GHWHUPLQH�WR�ZKDW�H[WHQW�WKH�
weight will be changed, t is the target attribute’s value, o is the output value given by the
perceptron, and xi is the input value fed into the perceptron. This method guarantees
convergence if the classes are linearly separable (Minsky & Papert, 1965). However,
most datasets do not have linearly separable classes.

A solution to this problem was using error backpropagation. In this way, the
outputs are calculated, and then the error is sent backwards through the network to update
the weights. Each output perceptron k calculates�LWV�HUURU�WHUP�įk using the following
formula:

Formula: įkÅ ok(1 – ok)(tk – ok)

Here, ok is the output value for the perceptron, and tk is the target attribute value.
These values are used in calculating the error term for each hidden node h using the
following formula:

Formula: įhÅ ok(1 – ok�Ȉ�Zkhįk

Note that wkh denotes the weight from node h to node k. The term Ȉ�Zkhįk for
hidden node h is therefore the sum of the weights times the error values of all the output
nodes k that are connected from h.

The weights are then updated in the following way:

Formula: wjiÅ wji + ¨Zji where ¨Zji� �Șįjxji

This update rule reduces the mean square error at the output layer. Connecting
many perceptrons together with many hidden layers using error backpropagation can help
improve accuracy but leads to a sharp increase in training time. Varying the threshold,
the number of layers, and the amount of time taken to train the network can all help
improve accuracy. Tests have been done using these different variations. (Rumelhart,
Widrow, & Lehr, 1994).

Using error backpropagation in the way above uses a threshold in order to
converge to one value. However, there is a way to modify error backpropagation where
instead of using the threshold, a probability is instead computed, and that is used in
determining the output attribute value. In this way, the value for the error term for each
output node k would then be calculated in the following way:

Formula: įkÅ ok(tk – ok)

The value for the error term for each hidden node h would then be calculated in
the following way:

Formula: įhÅ okȈ�Zkhįk

In this way, the threshold would be removed and be replaced with a probability.
Various work has been done using this modified form as well (Bishop, 1996)

Bayesian Techniques

Another type of classifier uses Bayesian reasoning. Bayesian techniques are
based on probability distributions and that using these probabilities on observed data can
improve performance. It tries to produce the best hypothesis from some space of
hypotheses H given some training data D. Most of Bayesian learning relies on Bayes’
theorem. Bayes’ theorem assumes that for each hypothesis h, there is a prior probability
already calculated, called P(h). P(D) is the prior probability that the training data D will
be observed. P(D|h) is the probability that the training data D will be observed given that
the hypothesis h holds. And P(h|D) is the probability that the hypothesis h will hold
given the training data D. To determine P(h|D), Bayes’ theorem provides the following
formula:

Formula: P(h|D) = P(D|h)P(h) / P(D)

Bayes’ theorem allows classification by selecting the maximum a posteriori
(MAP) hypothesis. For every h in H, P(D|h)P(h) is calculated. The denominator P(D) in
Bayes’ formula is removed because the training data D never changes for each change of
h in H. The hypothesis h with the highest value of P(D|h)P(h) is then used to classify
each instance.

Naïve Bayes

There are two standard methods in which Bayesian learning is done. One is a
technique called Naïve Bayes. In Naïve Bayes, the algorithm creates a set of all possible
target attributes. It then calculates the probability terms P(h) and P(D|h) as stated above.
However, it breaks each different attribute value d of the training data D and calculates
each one of them separately. It then takes the maximum values of P(h) multiplied by the
product of all the probabilities of P(D|h). For example, consider Figure 4.

Figure 4: Example of a Naïve Bayes model

Barbecue is the target attribute, and has the values yes or no. The classifier would
first build up the different instances of the barbecue data D and calculate each probability
given either yes or no. It would also calculate the overall probability of barbecuing. For
example, to classify the instance (Sun = out, Rain = none, Temperature = hot), the
classifier would calculate P(yes) * P(out|yes) * P(none|yes) * P(hot|yes) and P(no) *
P(out|no) * P(none|no) * P(hot|no) The end result would be the classifier selecting the
maximum value of the two and choose either yes or no. Naïve Bayes has been used for
tasks such as sorting out news articles (Joachims, 1996).

Bayesian Networks

Naïve Bayes assumes that all attribute values are conditionally independent given
a target attribute value. Thus, there needs to be a way to classify some attributes as
conditionally independent, but not others. The solution is a Bayesian network.

Definition: Attributes are conditionally independent of one another if given the value of
one or more attributes Y1…Ym determines the value of attributes X1…Xm independent of
values of attributes Z1…Zm (Mitchell, 1997).

In this way, a network is created by connecting attributes that are not
conditionally independent of one another and calculating their conditional probability.
Therefore a system of nodes is created similar to the system created by neural networks.
In this situation, you can infer target values for attributes by calculating the prior
probability of each value given the parents of that node. In this way you can connect
nodes together and have a network of nodes having many parents. An example of a
Bayesian network is shown in Figures 5a and 5b.

Figure 5a: Example of a Bayesian Network

Figure 5a: Example of a Conditional Probability Table

a,d a, ¬d ¬a,d ¬a, ¬d
f 0.4 0.1 0.8 0.2

¬f 0.6 0.9 0.2 0.8

In this example C has parent D, E has parent C, D has parents A and B, and F, the
target attribute, has parents A and D. It is not joined in layers as in neural networks, as
the parents of nodes can also be the parents of their children. Therefore calculating the
probability of F being f, given the data that A is a and D is d would be, for example,

would be P(F=f|A=a,D=d). Using the conditional probability table above, this value
would therefore be 0.4.

Unlike neural networks, in which errors want to be minimized, Bayesian networks
can be trained to maximize the probability of the observed data given the network
parameters. Weights (gVX amV 0lTdVX amV Yhase)odj shif tawo4upda T tcau=f|A=a,D=d the network

Machine Learning Work with Recommender Systems

Many collaborative filtering techniques have been used before. For example,
Ringo was a social information filter used to try and make music recommendations to
listeners (Shardanand & Maes, 1995). In such, recommendations are passed through
“word of mouth”, rather than content, so music recommendations may be drastically
different than those that a user has listened to before. There have been many other tests

Figure 7c: Genre3 Distribution

0 0 0 0

1 1

0

9

3 3

1

3

2

11

9

10

7

0
0

2

4

6

8

10

12

Acti
on

Adv
en

tur
e

Anim
ati

on

Chil
dre

ns

Com
ed

y
Crim

e

Doc
um

en
tar

y

Dram
a

Fan
tas

y
mTm ET BT 4.4498 4.4N 4.44.4498 4.4498 300.6004 468.1202 Tm /T1217j f
(iTj j ET BT 4.4498 4 4498 -4.4498 4.4498 253.9194 464.9993 Tm / l 3Tj f
(i)
Tj ET BT 4.4498 4.48 -4.4498 4.4498 255.1195 466.3195 Tm /328 1
Tf (r) 1 TET BT 4.4498 4.4498 -4.4498 4 4 0 8 258 2 473l 514. (n) T
Q 3l 514.a) Tj ET 4 0 8a

u

Performance Metrics and Evaluation Protocol

I decided to evaluate the results of tests of the machine learning algorithms on the
dataset by using accuracy, precision, and top-N precision.

Definition: Accuracy is the percentage of instances that are correctly classified by the
system.

Definition: Precision is the percentage of like predictions that agree with the user’s
taste.

Certain machine learning algorithms, such as Bayesian and neural networks,

Results

Attribute Selection

I tested both principal components and BestFirst to select the attributes to be fed as inputs
to the various machine learning algorithms.

Principal Components

Figures 8a, 8b, and 8c show the performance of the different machine learning algorithms
over data that was preprocessed using principal components attribute selection.

BestFirst

Figure 9c: Top-10 Precision Using BestFirst Attribute Selection

0

0.1

0.2

0.3

0.4

0.5

0.4

0.1

Neural Networks

Number of Training Epochs

I then decided to increase the standard training time on the data from 500
iterations to 1000 iterations. The results are shown in Figures 13a, 13b and 13c.

Figure 13c: Modifying Training Time in Neural Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

To
p-

10
 P

re
ci

si
on

Series1 1 1

NN2 w/ 500 Iterations NN2 w/ 1000 Iterations

Looking at the results, top-10 precision was the same despite increasing the
training time. Accuracy slightly decreased, and the standard deviation slightly increased.
Precision also slightly decreased. Therefore, despite increasing the training time, the
accuracy and standard deviation did not have a significant change. Therefore, I did not
bother increasing the training time for future experiments.

Learning Rate

I also considered modifying the learning rate within neural networks to determine
whether convergence to a better minimum could be achieved. The results are displayed
in Figures 14a, 14b and 14c.

Figure 14a: Modifying the Learning Rate in Neural Networks

55

60

65

70

70

60

6

0

Bayesian Networks

I decided to test the maximum number of parents each node can have on the

Figu n 15c: Varying the Number of Parents in Bayesian Networks (Content-Only)00.10.20.30.40.50.60.70.80.91

Collaborative Data Only

Figures 16a, 16b and 16c show the graphs for collaborative-only Bayesian networks.

Figure 16c: Varying the Number of Parents in Bayesian Networks (Collaborative-Only)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithms

To
p-

10
 P

re
ci

si
on

Enhanced Content Data

FiguW n18e: Varying the Number of Parents in Bayesian Networks (MoW nContent)0

0.10.2 0.3 0.40.50.6 0.7
0.8

0.9
1

Algorithms

T

op

-10

P

r

eci

s

ion

Conclusions and Future Work

The purpose of this thesis was to analyze machine learning techniques and apply
them to recommender systems in order to make recommendations for movie patrons. By
applying different strategies to both the dataset and the different algorithms, the hope was
to find an optimized way of predicting whether users would like certain movies based on
content information about the movie and collaborative information from other
moviegoers’ ratings. From the work done, it can be concluded that certain machine
learning algorithms can indeed perform well in making movie recommendations.

In terms of top-N precision, neural networks and principal components perform
extremely well for a low value of N (number of movies recommended). This is very
important for movie recommendations, as most users would only want to sort through 10
or fewer movies in order to pick one. The fact that top-N precision remains high up to
N=200 is also a good source of other sort of recommendations, such as recommendations
for people who buy or rent DVDs or watch movies on television. Those people might
need a bigger list as they want a list of movies to watch rather than just a select few.

Bayesian networks take much less training time than neural networks while
having the same top-10 precision, so it could be more useful for re-training when users
add their likes and dislikes into a system. Also, in terms of accuracy, Bayesian networks
display a significant improvement over neural networks, with both the standard version
and modified version of error propagation, as well as decision trees, Naïve Bayes, 1R and
0R classifiers. Bayesian networks perform well with both principal components and the
BestFirst attribute selection, something that none of the other algorithms tested do. It is
close with 1R in principal components but this could be due to the size of the dataset. A
dataset with move movies for each year could possibly lower 1R’s performance.

BestFirst appears to be an effective technique for attribute selection. It reduces
the number of attributes considerably, gives 100% top-10 precision and increases the
maximum accuracy from the 0R baseline. BestFirst is also faster than principal
components in that it selects features rather than applying weights to all of them, so it is
better in terms of accuracy, precision and time, but not in overall top-N precision.

There does not appear to be a big change in top-10 precision, accuracy or
precision when comparing neural networks with the standard version of error
backpropagation and the modified version. More testing would need to be done over
longer amounts of time to see if one is significantly better than the other.

More testing could be done on the parameter settings of neural networks in order
to determine what parameter values optimize accuracy, precision and top-10 precision. It
appears that adjusting the training time, learning rate and other variables does not
significantly change the accuracy and the precision of the recommendations.

The results of the optimal algorithms exceed the benchmarks set by 0R
significantly. The best performing algorithms have 100% top-10 precision, which is a
very important statistic. They also increased the accuracy and precision from 62% to 83%
and 62% to 80%, respectively.

It appears that using content-only, collaborative-only, or a combined dataset does
not change the top-10 precision, as all three dataset versions gave 100% top-10 precision.
100% top-10 precision in content-only data is especially good for a new movie for which
no collaborative data is available. Collaborative data only proved more useful in

increasing overall accuracy. However, it would be interesting to see what would happen
if even more content data was added, such as actors, as some moviegoers have favorite
actors and are more likely to see films by those actors.

Finally, Bayesian and neural network techniques should be tested on other
datasets that contain more data. The dataset chosen was rather small due to the time
complexities of a larger dataset. It should be determined whether the conclusion taken
from this set of experiments applies to larger datasets. Additional target users should be
considered as well.

References

Alvarez, S. A., Ruiz, C., Kawato, T., & Kogel, W. (2006). Neural Expert Networks for
Faster Combined Collaborative and Content-Based Recommendation. In Journal of
Computational Methods in Sciences and Engineering, to appear.

Balabanovic, M., & Shoham, Y. (1997). Combining content-Based and collaborative
recommendation. In Communications of the ACM, 40(3), pp. 66-72.

Billsus, D., & Pazzani, M.J. (1998). Learning collaborative information filters. In
Proceedings of the Fifteenth International Conference on Machine Learning, pp. 46-54.

Bishop, C. M. (1996). Neural networks for pattern recognition. Oxford, England: Oxford
University Press.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, pp. 43–52.

Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of
probabilistic networks from data. In Machine Learning, 9, pp. 309-347.

Harper, F., Li, X., Chen,Y. & Konstan, J. (2005). An Economic Model of User Rating in
an Online Recommender System. In Proceedings of the 10th International Conference on
User Modeling.

Joachims, T. (1996). A probabilistic analysis of the Rocchio algorithm with TFIDF for
text Categorization, (Computer Science Technical Report CMU-CS-96-118). Carnegie
Mellon University.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIE Press.

Mitchell, T. M. Machine Learning. (1997). Boston, MA: The McGraw-Hill Companies,
Inc.

Quinlan, J. R. (1986). Induction of decision trees. In Machine Learning, 1(1), pp. 81-106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Appendix

Top-N Precision w/ NN1 Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;

import weka.core.Instance;
import weka.core.Instances;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.Evaluation;

public class TopNPrecision {

public static void main(String[] args){

try{
Instances data = new Instances(

new BufferedReader(
 new FileReader("combBF.arff")));

//setting class attribute
data.setClassIndex(data.numAttributes() - 1);

// load unlabeled data

MultilayerPerceptron mlp = new MultilayerPerceptron();
mlp.setHiddenLayers("3"); // set the hidden nodes
mlp.setLearningRate(0.2); // set the learning rate
mlp.setTrainingTime(500); // set the training time
mlp.buildClassifier(data); // build classifier

Instances unlabeled = new Instances(
new BufferedReader(
 new

FileReader("combBF.arff")));
// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// create copy
Instances labeled = new Instances(unlabeled);
// label instances
Instance[] instances = new Instance[10];
double[] values = new double[10];

for(int i = 0; i < 10; i++){
instances[i] = null;
values[i] = 0;

}

//rank instances - only keep top N
for (int i = 0; i < unlabeled.numInstances(); i++) {
 double []clsLabel = mlp.distributionForInstance(unlabeled.instance(i));

 if(values[0] <= clsLabel[1]) { //like probability
 for(int j = 1; j < 10; j++){

if(values[j] <= clsLabel[1] && j != 9){
values[j-1] = values[j];
instances[j-1] = instances[j];

}
else if (j == 9){

values[j-1] = values[j];
instances[j-1] = instances[j];
values[j] = clsLabel[1];
instances[j] = unlabeled.instance(i);

}
else{

values[j-1] = clsLabel[1];
instances[j-1] = unlabeled.instance(i);
break;

}
}

 }
}

labeled.delete();
for(int i = 0; i < 10; i++)

if(instances[i] != null)
labeled.add(instances[i]);

//evaluate the instances
Evaluation eval = new Evaluation(labeled);
eval.crossValidateModel(
 mlp, labeled, 10, labeled.getRandomNumberGenerator(1));
System.out.println(eval.toSummaryString(true));

//write instances (to double check no doubles)
BufferedWriter writer = new BufferedWriter(
 new FileWriter("nn1.arff"));
writer.write(labeled.toString());
writer.newLine();
writer.flush();
writer.close();

}catch(Exception e){
e.printStackTrace();

}
}

}

Top-N Precision w/ NN2 Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;

import weka.core.Instance;
import weka.core.Instances;
import weka.classifiers.functions.MultilayerPerceptronNew;
import weka.classifiers.Evaluation;

public class TopNPrecision2 {

public static void main(String[] args){

try{
Instances data = new Instances(

new BufferedReader(
 new FileReader("combBF.arff")));

//setting class attribute
data.setClassIndex(data.numAttributes() - 1);

// load unlabeled data

MultilayerPerceptronNew mlp = new MultilayerPerceptronNew();
mlp.setHiddenLayers("3"); // set the hidden nodes
mlp.setLearningRate(0.2); // set the learning rate
mlp.setTrainingTime(500); // set the training time
mlp.buildClassifier(data); // build classifier

Instances unlabeled = new Instances(
new BufferedReader(
 new

FileReader("combBF.arff")));
// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// create copy
Instances labeled = new Instances(unlabeled);
// label instances
Instance[] instances = new Instance[10];
double[] values = new double[10];

for(int i = 0; i < 10; i++){
instances[i] = null;
values[i] = 0;

}

//rank instances - only keep top N
for (int i = 0; i < unlabeled.numInstances(); i++) {
 double []clsLabel = mlp.distributionForInstance(unlabeled.instance(i));
 if(values[0] <= clsLabel[1]) { //like probability
 for(int j = 1; j < 10; j++){

if(values[j] <= clsLabel[1] && j != 9){

values[j-1] = values[j];
instances[j-1] = instances[j];

}
else if (j == 9){

values[j-1] = values[j];
instances[j-1] = instances[j];
values[j] = clsLabel[1];
instances[j] = unlabeled.instance(i);

}
else{

values[j-1] = clsLabel[1];
instances[j-1] = unlabeled.instance(i);
break;

}
}

 }
}

labeled.delete();
for(int i = 0; i < 10; i++)

labeled.add(instances[i]);

//evaluate the instances
Evaluation eval = new Evaluation(labeled);
eval.crossValidateModel(
 mlp, labeled, 10, labeled.getRandomNumberGenerator(1));
System.out.println(eval.toSummaryString(true));

//write instances (to double check no doubles)
BufferedWriter writer = new BufferedWriter(
 new FileWriter("nn2.arff"));
writer.write(labeled.toString());
writer.newLine();
writer.flush();
writer.close();

}catch(Exception e){
e.printStackTrace();

}
}

}

Top-N Precision w/ BN Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;

import weka.core.Instance;
import weka.core.Instances;
import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.search.global.*;
import weka.classifiers.Evaluation;

public class TopNPrecision3 {

public static void main(String[] args){

try{
Instances data = new Instances(

new BufferedReader(
 new FileReader("combBF.arff")));

//setting class attribute
data.setClassIndex(data.numAttributes() - 1);

// load unlabeled data

BayesNet mlp = new BayesNet();
K2 k2 = new K2();
k2.setMaxNrOfParents(1); // set max # of parents
mlp.setSearchAlgorithm(k2); // set search algorithm

mlp.buildClassifier(data); // build classifier

Instances unlabeled = new Instances(
new BufferedReader(
 new

FileReader("combBF.arff")));
// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// create copy
Instances labeled = new Instances(unlabeled);
// label instances
Instance[] instances = new Instance[10];
double[] values = new double[10];

for(int i = 0; i < 10; i++){
instances[i] = null;
values[i] = 0;

}

//rank instances - only keep top N
for (int i = 0; i < unlabeled.numInstances(); i++) {
 double []clsLabel = mlp.distributionForInstance(unlabeled.instance(i));

 if(values[0] <= clsLabel[1]) { //like probability
 for(int j = 1; j < 10; j++){

if(values[j] <= clsLabel[1] && j != 9){
values[j-1] = values[j];
instances[j-1] = instances[j];

}
else if (j == 9){

values[j-1] = values[j];
instances[j-1] = instances[j];
values[j] = clsLabel[1];
instances[j] = unlabeled.instance(i);

}
else{

values[j-1] = clsLabel[1];
instances[j-1] = unlabeled.instance(i);
break;

}
}

 }
}

labeled.delete();
for(int i = 0; i < 10; i++)

labeled.add(instances[i]);

//evaluate the instances
Evaluation eval = new Evaluation(labeled);
eval.crossValidateModel(
 mlp, labeled, 10, labeled.getRandomNumberGenerator(1));
System.out.println(eval.toSummaryString(true));

//write instances (to double check no doubles)
BufferedWriter writer = new BufferedWriter(
 new FileWriter("bn.arff"));
writer.write(labeled.toString());
writer.newLine();
writer.flush();
writer.close();

}catch(Exception e){
e.printStackTrace();

}
}

}

