

create tighter regulations for privacy and enforce larger penalties for non-
compliance [2]. Another solution involves a new programming language that
enforces privacy policies by constraining certain variables that correspond
to user data [3]. These are good solutions, and they are important steps
towards giving the client more control. One of the biggest issues with the
current state of privacy, though, is that even if a user edits their privacy
settings, often they are still left unclear as to how their data is managed, and
frankly can't tell if it was mismanaged anyway. Figure 1 below shows how
clients lose their control after sending it o� to a service.

CLIENT
Sends personal info to a server
Believes the service will use
data responsibly

?????
How is your data used? Who
can use it?

SERVER
Provides the services you
requested, but do they do
more?

YOUR DATA!!

All your data

Figure 1: Current Client/Server Relationship

The approach investigated here will not go so far as to ensure the data
is used properly, but it will create a `promise' that the service will implicitly
make with every instance of the data being used. This scheme uses a type of
Key-Policy encryption called Attribute-Based Encryption. It requires a client
to share its data with a server, which will perform some action with the data,
and a third-party authority to create, store and distribute keys necessary for
the data to be encrypted and decrypted. The prototype for such a system has
been built as a web app called privateBook. In privateBook, clients create
an account and set a privacy policy, then can write posts that they can view
if signed in to their own account. The prototype shows a practical way of
ensuring data is encrypted for all parties, and can only be seen as a result of
the service adhering to a user's privacy policy.

2

2 Data Encryption

Key Generation Key Generation uses a list of attributes,A, and MK to
generate a decryption key, D. This is the ABE version of a private key, used
to decrypt. A is the list of attributes that must satisfy in order for D to
successfully decrypt E.

Decryption Decryption takes E, the ciphertext containing , PK and D.
It applies D to E in order to decrypt the message. IfA satis�es , in the
sense of the attributes ful�lling the boolean expression included in D, the
message will decrypt.

2.3 Example Usage

An example following the paper describing ABE's �ne-grained access capa-
bilities can demonstrate how this system would play out if used in exactly
the way described above [5].
If there were a system for storing activity logs on a network, this data would
need to be protected by an encryption scheme that would vary for di�erent
types of information and di�erent types of activity. Here, ABE encryption
would be useful, as each log could be stored with a speci�c access policy:
say "user is Bob or Alice AND the date is between September 2010 and May
2014 AND the activity is related to updating or changing the �nancial in-
formation of projects". This information would then be encrypted with this
policy. Anyone investigating the logs could then be given a secret key with a
speci�c access list with their properties: user name, title, security clearance,
activity type, date, etc. ABE would then only allow the analyst to access
information if their information �t with the policy: all other data, which is
not pertinent to their work, will be unaccessible.

3 ABE Privacy Prototype

The implementation of ABE is provided by Charm, a Python framework pro-
viding many di�erent crypto systems [4]. It is used to power the encryption in
privateBook. This can apply to any service which uses client data to perform
some function, whether it be like Facebook, just storing and displaying mes-
sages, text or multimedia, or something like Google Maps, which uses client
location info to display a map or directions. In a sense, the prototype ap-
plies ABE in a backwards fashion: rather than encrypting with a policy, and

4

users attempt to decrypt by presenting their attributes, here the attribute
list is created and clients present their policies. Figure 2 displays the process.

CLIENT
Encrypts their data with
the Public Key

AUTHORITY
Generates and stores keys

SERVER
Attribute list is the
default privacy policy

2. Public Key
1. Attribute List

2. Private Key

3. Encrypted Data

4. Decrypted Data or Failure

Figure 2: Prototype encryption/decryption process

3.1 Parties Involved

In privateBook, there are three relevant parties involved: the server, which
provides the service, a client, who uses the service, and the authority, a third
party that creates, distributes and stores the keys for both parties. The
server creates default settings for privacy, saving them as an attribute list.

1. Server Registration This is the �rst step, and only happens once.
The server registers with the Authority, naming itself and providing a list of
attributes, A, which is a list of the default values created for a privacy policy.
The Authority stores A.

2. Key Distribution This happens once, in three parts. The Authority
generates PK and MK, the public parameters and master key, which are used
to generate D.A, PK and D are stored by the Authority. Then, D is sent
to the server, which will use it to decrypt data, and PK is sent to the client,
who uses it to encrypt data.

3. Client Encryption This will happen with every client request. The
client encrypts by providing their data, , their personal privacy policy, and
PK. This yields E, a cipher text, which is sent to the server. The server then
stores the data as a cipher text.

4. Server Response This happens after every client request. The server
stores the encrypted data, and attempts to decrypt it by applying the de-

table, and a homepage, where the client can write their updates and have
them displayed; each update is stored by the server as a cipher text with a
user ID in a Posted Data table. We will demonstrate each of the four steps
in the privateBook implementation.

4.1 privateBook Server Registration

The privateBook server registers its name and default privacy settings with
the Authority, which saves them as an attribute list, and then creates PK
and D, the public parameters and private key. Figure 3 shows the printed
values created from the default privateBook privacy values.

Figure 3: Authority values (Attribute list, PK, D)

These default values are based o� the client privacy policy creation page,
which is shown in Figure 4.

7

Figure 4: Client Policy creation page

4.2 Authority Key Storage and Distribution

The Authority then serializes the dictionary keys and stores them, shown in
Figure 5.

Figure 5: Authority key storage

These keys are then provided to the server and the clients by way of database

4.3 Client Privacy Policy Creation

The client, to become a privateBook user, registers themselves with a name
and their privacy policy, as shown in Figure 4. They are then given their
own ID, simply the order in which they were created, as their password,
and username of their full name. These design choices are meant to simplify
the account creation process: the focus of the prototype is not concerned
with creating users as much as maintaining the privacy of their data, so pri-
vateBook has foregone security measures that should be in place in practical
applications. Two policies are shown in Figure 6. They are strings of boolean
expressions. The �rst is a policy that has the least privacy restrictions as
given by the service, and the second has the strictest settings. The �rst
includes an `or' for every type of privacy setting which includes all possible
attributes; this allows for any default setting in the attributes list to satisfy
the policy. The second, stricter policy includes the fewest attributes, making
it the most di�cult to satisfy.

Figure 6: Least strict and most strict user privacy policies

This method of creating a default attribute list was to allow the server to
fail. In practice, a service that intends to have wide use should never fail,
and thus an early idea was to simply let each attribute be the type of privacy
setting it was, and store the values elsewhere. Then the server would still
need to decrypt the data and thus inherently read the privacy policy, but
that would o�er no real di�erence from what exists currently, as the actual
privacy settings would still be stored somewhere and potentially ignored, as
they are now. So a di�culty arose in �nding an appropriate method to allow
one attribute list to successfully satisfy many di�erent policies. This method
was chosen because it is based on an idea of having di�erent levels of privacy,
where a baseline is chosen by the service and clients can be more or less strict;
more, rendering the service useless for that user, and less, allowing for full
use.

9

4.4 Client Encryption and privateBook Response

The client then makes a status update, much like a Facebook one, and sub-
mits that. The data is encrypted with the update, a string, along with the
user's privacy policy and the public key PK. This results in a long cipher text,
which is stored in privateBook's database as a serialized dictionary. The re-
sults of this process are shown in Figure 7. E is stored in the database, then
the page is reloaded, displaying all of the user's updates. The server, upon
loading of the user's homepage, �rst attempts to decrypt their data. If it is
successful, the date, time and actual content are shown. If it is unsuccessful,
the content is replaced with: \Your status could not be displayed: this ser-
vice does not support your privacy policy!" Thus this service will not work
for the client if their privacy settings are too strict, and therefore their policy
is not satis�ed by privateBook's default attribute list.

5 Issues with the Prototype

Though the privateBook prototype o�ers a solution, there are, as can be
expected, some faults. The biggest issue is that the encrypted data, E, is

Acknowledgements

Professor Robert Muller and Stefan Saroiu at Microsoft Research

References

[1] Lawler, Ryan. "QuizUp Sends Personal User Info To Strangers, Com-
pany Says Bug Contributed To Weakened Security." TechCrunch, 25 Nov.
2013.

[2] Bajaj, Vikas. "Imagine if Companies Had to Ask Before Using Your
Data." Taking Note. The New York Times, 13 Mar 2014.

[3] J. Yang, K. Yessenov, A. Solar-Lezama. A Language for Automatically
Enforcing Privacy Policies.POPL 2012.

[4] Akinyele, Joseph A. and Garman, Christina and Miers, Ian and Pagano.
\Charm: a framework for rapidly prototyping cryptosystems." Journal
of Cryptographic Engineering3.2 (2013): 111-128.

[5] J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based
Encryption.

12

