ANALYSIS QUALIFYING EXAM

JUNE 2013

Part 1: Real analysis

Answer all 4 questions In your proofs you may use any major theorem except the fact you are trying to prove (or a variant of it) State clearly what theorems you use Good luck

Exercise 1. (2^{\P} points)

- ζ) Prove that not every subset of $\ \ , \ \$ is Lebesgue measurable
- (2) Let \mathbf{f}_n , $\to \mathbb{R}$ be a sequence of Lebesgue measurable functions. Prove that the set $\mathbf{E} = \{\mathbf{x} | \lim_{n \to \infty} \mathbf{f}_n(\mathbf{x}) \text{ exists} \}$ is Lebesgue measurable

Exercise 2. (2^{\P} points)

Given $\mathbf{f} \in \mathsf{L}^1(\mathbb{R})$ let

$$\mathbf{Hf}(\mathbf{x}) = \sup_{r \downarrow 0} \frac{1}{2r} \int_{x-r}^{x+r} |\mathbf{f}(\mathbf{x})| d\mathbf{x},$$

denote the Hardy Littlewood maximal function. Show that Hf is measurable and that

$$m(\{x|Hf(x) > \}) \le \frac{3}{2} \|f\|_1.$$

Exercise 3. (2^{\P} points)

Let $(\mathbf{X}, \mathcal{M}, \boldsymbol{\mu})$ be a measure space and let $\mathbf{f} \in L^{\infty}(\mathbf{X}) \cap L^{1}(\mathbf{X})$ Show that $\mathbf{f} \in L^{p}(\mathbf{X})$ for all $\mathbf{p} >$, and that $\lim_{p \to \infty} \|\mathbf{f}\|_{p} = \|\mathbf{f}\|_{\infty}$

Exercise 4. (2^{\P} points)

Let X be a Banach space and L(X,X) the space of bounded linear operators

() Show that the space L(X,X) with the induced operator norm is also a

2 JUNE 2013

Part 2: Complex analysis

In all of the following you may freely use the Cauchy integral formula and Cauchy estimates and the fact that holomorphic functions are analytic Each problem is worth 2 points

, Let $f \in C \to C$ be an entire holomorphic function such that $|f(z)| \le \log(|z|)$ whenever |z| is sufficiently large. Show that f is constant

- 2 Let \mathbf{f} $\{\mathbf{z} \in \mathbf{C} \mid |\mathbf{z}| < , \} \to \mathbf{C}$ be a holomorphic function on the unit disk Suppose that $\mathbf{f}(\mathbf{a}_n) =$ for some nonzero sequence \mathbf{a}_n converging to Show that \mathbf{f} is identically zero. Show that this need not be true if \mathbf{a}_n converges to ,
- 3 Give an example of a nonzero harmonic function $\mathbf{f} \ \mathbf{C} \to \mathbf{R}$ and a nonzero sequence \mathbf{a}_n converging to zero such that $\mathbf{f}(\mathbf{a}_n) = \text{ for all } \mathbf{n}$

4 Let
$$\mathbf{f}(\mathbf{z}) = \mathbf{z}^4$$
 —, Describe
$$\int_{-\infty}^{\infty} \frac{\dot{\mathbf{f}(\mathbf{z})}}{\mathbf{f}(\mathbf{x} - \mathbf{ir})} d\mathbf{x}$$

as a function of $r \in R$

Suppose that $\mathbf{f}(\mathbf{z})$ $\mathbf{C} \to \mathbf{C}$ is an entire holomorphic function without any zeroes. Show that there exists a holomorphic $\mathbf{g}(\mathbf{z})$ such that $\mathbf{f}(\mathbf{z}) = \mathbf{e}^{g(z)}$ by giving an integral formula for $\mathbf{g}(\mathbf{z})$