Real Analysis Qual

June 10, 2016

Problem 1. Let be the equivalence relation on the interval [0,1] given by $x \ y \ i \ x - y \ Q$. Choose one element from each equivalence class (using the Axiom of Choice). Let $A \ [0,1]$ denote the set of these chosen elements. For a given set $B \ R$, define $B + x = \{y + x \ | \ y \ B\}$.

- (a) Show that the sets A + q, for Q = [-1, 1], are disjoint.
- (b) Show that [0,1] $q \in [-1,1](A+q)$ [-1,2].
- (c) Show that A

(c) Prove Fatou's Lemma, which states that

$$\lim_{n} \inf f_{n} \quad \lim_{n} \inf \quad f_{n}$$

for any sequence (f_n) of non-negative, measurable functions. To get started, let $g_n = \inf_i f_i$. Observe they with

$$\mu(X) < .$$
 Fix E_1, \ldots, E_n A and c_1, \ldots, c_n \mathbb{R} 0. Define $: A$ [0,] by
$$(A) = \bigcap_{i=1}^n c_i \mu(A - E_i).$$

- (a) Show that is a measure.
- (b) Show that is absolutely continuous with respect to μ .

Complex Analysis Qualifying Exam – Spring 2016

Please answer the following problems. Explain your argument carefully – if you refer to a well-known theorem from class, please state the theorem precisely and explain why it applies.

Notation: D = open unit disk, $C = C - \{0\}$, H = upper half plane.

- 1) Find a holomorphic function f on \mathbb{C} such that
 - f is a pointwise limit of polynomial functions, but
 - f is not a uniform limit of polynomial functions (that is, there is no sequence of polynomials that converges to f uniformly on compact subsets of \mathbb{C}).

Prove both assertions for your choice of f.

2) Find a biholomorphism between H and the region

$$U = \{z \mid C/|z-1/<1, |z-i/<1\}.$$

It is enough to write down explicitly functions whose composition yields a biholomorphism from H to U or from U to H.

3) Let U C be a simply connected region. For any point a U, the Green function of U

where $\ (z)$ is the Weierstrass -function

$$(z) = \frac{1}{z^2} + \frac{1}{(z-)^2} - \frac{1}{2}$$
.

Justify carefully any techniques you use.