Analysis Qualifying Exam ____Spring 2011

Please answer all 6 problems from each section and show your work. Each problem is worth 30 points.

SECTION 1: REAL ANALYSIS

In your proofs, you may use any major theorem, except the fact you are trying to prove, or a mere variant of it. State clearly what theorems you use. Good luck.

1 Let $f_n: X$ R be (X, μ) measurable functions such that 0 f_n 1 and μ is a finite measure. Prove that if

$$\lim_{n \to \infty} f_n d\mu = \mu(X)$$

then f_n 1 a.e.

2 Let f be Lebesgue integrable on (0,a) and $g(x) = \int_{x}^{a} t^{-1} f(t) dt$. Prove that g is Lebesgue integrable on (0,a) and $\int_{0}^{a} g(x) dx = \int_{0}^{a} f(x) dx$.

3 Let μ , be finite measure on (X, M) with $<<\mu$. Define $=\mu+$ and $f=\frac{d}{d}$. Prove that 0

4 Let s C and consider

 n^{-s} .